We experimentally demonstrate a high resolution integrated spectrometer on silicon on insulator (SOI) substrate using a large-scale array of microdonut resonators. Through top-view imaging and processing, the measured spectral response of the spectrometer shows a linewidth of ~0.6 nm with an operating bandwidth of ~50 nm. This high resolution and bandwidth is achieved in a compact size using miniaturized microdonut resonators (radius ~2 μm) with a high quality factor, single-mode operation, and a large free spectral range. The microspectrometer is realized using silicon process compatible fabrication and has a great potential as a high-resolution, large dynamic range, light-weight, compact, high-speed, and versatile microspectrometer.
We experimentally demonstrate efficient extinction spectroscopy of single plasmonic gold nanorods with exquisite fidelity (SNR > 20dB) and high efficiency light coupling (e. g., 9.7%) to individual plasmonic nanoparticles in an integrated platform. We demonstrate chip-scale integration of lithographically defined plasmonic nanoparticles on silicon nitride (Si3N4) ridge waveguides for on-chip localized surface plasmon resonance (LSPR) sensing. The integration of this hybrid plasmonic-photonic platform with microfluidic sample delivery system is also discussed for on-chip LSPR sensing of D-glucose with a large sensitivity of ∼ 250 nm/RIU. The proposed architecture provides an efficient means of interrogating individual plasmonic nanoparticles with large SNR in an integrated alignment-insensitive platform, suitable for high-density on-chip sensing and spectroscopy applications.
We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).
We report an experimental observation of strong variations of quality factor and mode splitting among whispering-gallery modes with the same radial order and different azimuthal orders in a scattering-limited microdisk resonator. A theoretical analysis based on the statistical properties of the surface roughness reveals that mode splittings for different azimuthal orders are uncorrelated, and variations of mode splitting and quality factor among the same radial mode family are possible. Simulation results agree well with the experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.