The dry roots of
Polygonum multiflorum
(PM), involving both the raw and processed materials, are widely used as the traditional Chinese medicine for treating various diseases in China. Hepatotoxicity has been occasionally reported in patients who consume PM. Unfortunately, no definite criteria are currently available regarding the processing technology of PM for reduction the toxicity. In this work, we aimed to investigate the variations of PM metabolite profiles induced by different processing technologies by UHPLC/Q-Orbitrap-MS and multivariate statistical analysis, and to discover the potential toxic compounds by correlating the cytotoxicity of L02 cell with the contents of metabolites in raw and processed PM samples. We could identify two potential toxic compounds, emodin-8-
O
-glucoside and torachrysone-
O
-hexose, which could be selected as the toxic markers to evaluate different processing methods. The results indicated all processed PM samples could decrease the cytotoxicity on L02 cell. The best processing technology for PM process was to steam PM in black soybean decoction (BD-PM) for 24 h.
Vinegar and wine processing of medicinal plants are two traditional pharmaceutical techniques which have been used for thousands of years in China. Tetrahydropalmatine (THP), dehydrocorydaline (DHC) and protopine are three major bioactive molecules in Rhizoma Corydalis. In this study, a simple and reliable HPLC method was developed for simultaneous analysis of THP, DHC and protopine in rat tissues after gastric gavage administration of Rhizoma Corydalis. The validated HPLC method was successfully applied to investigate the effect of wine and vinegar processing on the compounds’ distribution in rat tissues. Our results showed that processing mainly affect the Tmax and mean residence time (MRT) of the molecules without changing their Cmaxand AUC0–24 h Vinegar processing significantly increased the Tmax of DHC in heart, kidney, cerebrum, cerebrellum, brain stem and striatum and prolonged theTmax of protopine in brain. No significant changes were observed on the Tmax of THP in rat tissues after vinegar processing. Wine processing reduced the Tmaxof protopine and DHC in liver and spleen and Tmax of protopine in lung, but increased the Tmax of THP in all the rat tissues examined. To our knowledge, this is the first report on the effects of processing on the tissue distribution of the bioactive molecules from Rhizoma Corydalis.
Epimedium herb is one of the most vital traditional Chinese medicines (TCMs), which is used for “nourishing the kidney and reinforcing the Yang”. In the guidance of TCM theory, Epimedium herb is usually processed with lamb oil to increase its efficacy. The contents of active ingredients in different Epimedium are significantly varied, which may derive from their different species, regions and processing methods. In this research, 13 batches of raw Epimedium collected from 6 provinces were identified. After optimization of the processing method of Epimedium, a liquid chromatography–mass spectrometry (LC–MS/MS) method for simultaneous determination of 16 compounds was established to evaluate the quality of raw and processed. Then the multivariate statistical technique was applied to compare different batches of Epimedium based on the LC–MS/MS data. As a conclusion, the herbs collected from 6 areas were ascribed to 5 species by microscopic and appearance features. Meanwhile, all of the raw and processed samples were classified by partial least squares discriminant analysis (PLS-DA) based on the 16 analyzed compounds. The comparison results indicate that processing and species both have important influences on Epimedium compositions contents.
As a traditional Chinese medicine, Euodiae Fructus is widely used due to its analgesic, anti‐inflammatory, and antihypertensive effects. However, Euodiae Fructus has also been documented to be toxic, and the toxic effects can be reduced by processing. To distinguish Euodiae Fructus from its processes products and study the changes of raw and processed products before and after processing, we evaluated four auxiliary material processing methods including vinegar, Zingiberis Rhizoma, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma. The raw Euodiae Fructus and four processed Euodiae Fructus samples were analyzed and compared based on the high‐performance liquid chromatography (HPLC) fingerprints combined with chemometrics, including principal component analysis (PCA), partial least squares‐discriminant analysis (PLS‐DA), and principal component analysis‐class (PCA‐Class). A total of 27 common peaks were obtained by fingerprint analysis. The fingerprint similarity of raw and processed samples was between 0.86–0.999. We also determined the contents of the main active ingredients ‐ Evodiamine and Rutaecarpine. PCA and PLS‐DA analyses were used to distinguish between the raw and processed samples of Euodiae Fructus, and 14 chemical markers were screened out. Four kinds of processed products were further analyzed and the results showed that they could be successfully distinguished under the established models, and 12 chemical markers were labeled. PCA‐Class results revealed that the classification models constructed in this study had adequate discrimination ability. The method combined with HPLC fingerprinting and multi‐component chemical pattern recognition technology could be used to differentiate raw and processed Euodiae Fructus with adequate predictive power. Our findings confirmed the rationality of the pharmacopoeial method and provided a reference for the quality control of the Glycyrrhizae Radix et Rhizoma processed Euodiae Fructus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.