The high-speed railway (HSR) has been a long-term hotspot in both scientific and engineering societies to enhance the long-term high quality HSR service. This study aims to investigate the WJ-7B type small resistance fastener rubber pad applied in HSR, and temperature sweep test is applied to determine the mechanical parameters of the fastener rubber pad, which are hereafter introduced into the vehicle-track-viaduct vertical coupling model via dynamic flexibility method. The track irregularity spectrum is considered as fixed-point excitation to investigate the temperature-dependent effect of fastener rubber pad on the dynamic responses. The results reveal that the rigidity of the fastener rubber pad is low temperature sensitive and high temperature stable, and the temperature variation has little effect on the vertical dynamic responses of the vehicle. The dynamic flexibility of the rail increases in amplitude and the dominant frequency decreases as the temperature of the fastener rubber pad increases. The vertical dynamic responses of the wheel-rail force, the wheelset and the rail-viaduct system gradually decrease as the temperature of the fastener rubber pad increases, and the peak frequency follows the similar rule. While under high temperature circumstances, the temperature dependent stiffness of the fastener rubber pad has little influence on the peak of the dominant frequency in the vertical dynamic response of the track-viaduct system.
To scientifically characterize the dynamic mechanical characteristics of the rubber pad under the rail of fasteners and its influence on the dynamic response of the vehicle-rail-viaduct system, taking the rubber pad under the rail of WJ-7B high-speed railway (HSR) with constant resistance as an example, a TFDV model was applied to characterize the viscoelasticity of the rubber pad and the theoretical model in the dynamic coupling of vehicle-rail-bridge was also studied. The results show that the energy storage modulus and loss factor of rubber pad under rail show a curved surface relation versus the change of frequency-temperature. In a certain frequency/temperature range, the energy storage modulus and loss factor of rubber pad under rail increase with the decrease of temperature and the increase of frequency, and the influence of low temperature on dynamic parameters is more significant. With the decrease of temperature, the minimum value of total dynamic flexibility decreases, and the corresponding extreme frequency shifts to high frequency. Viscoelastic dynamic features of rubber pad under rail mainly affect the dynamic response of vehicle subsystem and rail-bridge subsystem. With the decrease of ambient temperature of rubber pad, the dominant frequency band of power spectrum curve of each structure shifts to high frequency.
In order to investigate the mechanism of the frequency-dependent viscoelasticity of the rail pad on the acoustic radiation characteristics of a box girder viaduct, this study establishes a high-order model of its dynamic parameters to reveal the frequency-varying viscoelasticity of the rail pad, and establishes a vehicle–track–viaduct vertical coupling model. Finally, the acoustic radiation characteristics of a box girder viaduct are analyzed by combining the finite element method and the boundary element theory. The results show that the S-stiffness and D-stiffness of the rail pad increase with the increase in frequency, and the frequency sensitivity of the S-stiffness is greater than that of the D-stiffness. The high-order characterization model of the dynamic parameters of the rail pad has a good fitting effect. The main influence frequency band of the frequency variable viscoelasticity of the rail pad on the wheel–rail force and the equivalent discrete spring force of the sliding layer is 30–90 Hz, resulting in the shift of the dominant frequency to a high frequency by 4 Hz. We consider that the frequency-varying viscoelasticity of the rail pad will cause the dominant frequency of the acoustic pressure level of the field point to shift to a high frequency of 4–6 Hz, which has the greatest influence on the sound pressure level of each field point at the Peak Frequency Point of Insertion Loss (PFPIL), and the influence degree is consistent, resulting in the maximum value of the total sound pressure level of the surface field increasing by 4.1 dB. Without considering the frequency-varying viscoelasticity of the rail pad, the sound pressure level of each field point at 20–53 Hz will be overestimated and the sound pressure level of each field point in the 53–100 Hz frequency band will be underestimated. The panel sound power level contribution coefficient of the box girder is obviously different at different frequency points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.