The activation and conversion of small molecules (H2, O2, H2O, CO2, N2, CH3OH, and C2H5OH) in energy‐related systems has attracted researchers’ attentions around the world. The conversion of these molecules plays a key role in renewable energy storage and conversion systems, and for that, the electrocatalysis and photocatalysis processes are considered as clean and efficient strategies. Numerous materials are designed to promote the conversion process to satisfy the different requirements for efficiency and selectivity. Due to the flexible switching between Ce3+ and Ce4+ with rich oxygen defects, CeO2‐based materials display excellent performance in all the related reaction processes. Herein, the CeO2‐based electro(photo)catalysts according to different reactions are summarized. Specifically, the influence of material compositions, morphologies, and structures on catalytic performance is discussed, and the significant role of CeO2 is emphasized. Finally, several approaches are advocated to promote the development of CeO2‐based electro(photo)catalysis and accelerate their industrial application.
Layered double hydroxides (LDHs) have been considered as promising electrodes for supercapacitors due to their adjustable composition, designable function and superior high theoretic capacity. However, their experimental specific capacity is significantly lower than the theoretical value due to their small interlayer spacing. Therefore, obtaining large interlayer spacing through the intercalation of large‐sized anions is an important means to improve capacity performance. Herein, a metal organic framework derived cobalt‐nickel layered double hydroxide hollowcage intercalated with different concentrations of 1,4‐benzenedicarboxylic acid (H2BDC) through in‐situ cationic etching and organic ligand intercalation method is designed and fabricated. The superior specific capacity and excellent rate performance are benefit from the large specific surface area of the hollow structure and increasing interlayer spacing of LDH after H2BDC intercalation. The sample with the largest layer spacing displays a maximum specific capacity of 229 mA h g−1 at 1 A g−1. In addition, the hybrid supercapacitor assembled from the sample with the largest layer spacing and active carbon electrode has a maximum specific capacity of 158 mA h g−1 at 1 A g−1; the energy density is as high as 126.4 W h kg−1 at 800 W kg−1 and good cycle stability.
A gold-catalyzed
cascade reaction of conjugated diynamides has
been developed. In this way, a series of sulfone-containing pyrrolo[2,1-a]isoquinolines featuring the core structural motifs of
lamellarin alkaloids were prepared atom economically. Mechanistic
studies including DFT calculations uncovered a consecutive 1,2-migration
of the sulfonyl group for the formation of a pyrrole ring.
Human umbilical cord-derived mesenchymal stromal cells (hUCMSCs) are the most primitive of those isolated from other post-natal tissue source. The hUCMSCs possess the capability of differentiating along multi-lineage. This study aimed to investigate whether hUCMSCs can differentiate into urothelium-like cells. The hUCMSCs were isolated from fresh human umbilical cord postpartum and expanded at least to passage 3 in vitro. Subsequently, they were cultured with conditioned medium from urothelial cells (UC-CM) supplemented with 20 ng/ml exogenous epidermal growth factor (EGF). Urothelial cell specific marker uroplakin II (UPII) and cytokeratins were evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence technology. During culture, hUCMSCs started to express UPII and cytokeratins weakly at 7 days and were significantly up-regulated at 2 weeks post-induction. Additionally, morphology of hUCMSCs changed from spindle-shape to a polygonal epithelial-shape similar to that of urothelial cells after 7 days. The study results indicated that hUCMSCs can differentiate into urothelium-like cells in a defined micro-environment in vitro constituted by UC-CM and exogenous EGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.