In this study, the effects of Ultrasonic Nano-crystal Surface Modification (UNSM) on residual stresses, microstructure changes and mechanical properties of austenitic stainless steel 304 were investigated. The dynamic impacts induced by UNSM leads to surface nanocrystallization, martensite formation, and the generation of high magnitude of surface compressive residual stresses (-1400 MPa) and hardening. Highly dense deformation twins were generated in material subsurface to a depth of 100 µm. These deformation twins significantly improve material work-hardening capacity by acting both as dislocation blockers and dislocation emission sources. Furthermore, the gradually changing martensite volume fraction ensures strong interfacial strength between the ductile interior and the two nanocrystalline surface layers and thus prevents early necking. The microstructure with two strong surface layers and a compliant interior embedded with dense nanoscale deformation
Existing and emerging methods in computational mechanics are rarely validated against problems with an unknown outcome. For this reason, Sandia National Laboratories, in partnership with US National Science Foundation and Naval Surface Warfare Center Carderock Division, launched a computational challenge in mid-summer, 2012. Researchers and engineers were invited to predict crack initiation and propagation in a simple but novel geometry fabricated from a common off-the-shelf commercial engineering alloy. The goal of this international Sandia Fracture Challenge was to benchmark the capabilities for the prediction of deformation and damage evolution associated with ductile tearing in structural metals, including physics models, computational methods, and numerical implementations currently available in the computational fracture community. Thirteen teams participated, reporting blind predictions for the outcome of the Challenge. The simulations and experiments were performed independently and kept confidential. The methElectronic supplementary material The online version of this article (doi:10.1007/s10704-013-9904-6) contains supplementary material, which is available to authorized users.Sandia National Laboratories, Albuquerque, NM, USA e-mail: blboyce@sandia.gov ods for fracture prediction taken by the thirteen teams ranged from very simple engineering calculations to complicated multiscale simulations. The wide variation in modeling results showed a striking lack of consistency across research groups in addressing problems of ductile fracture. While some methods were more successful than others, it is clear that the problem of ductile fracture prediction continues to be challenging. Specific areas of deficiency have been identified through this effort. Also, the effort has underscored the need for additional blind prediction-based assessments.
It has been known
for decades that bone exhibits piezoelectric
behavior. In recent years, it was directly proved that this effect
stems from a polymeric matrix in bone, i.e., collagen fibrils. This
effect in collagen is distinctly different from organic piezoelectric
crystals, given the semicrystalline molecular structure of the collagen
biopolymer. As such, the molecular mechanism of this electromechanical
coupling effect in a realistic “super-twisted” model
of collagen has been elusive. Herein, we present an investigation
on the molecular mechanism of piezoelectric effect in collagen using
full atomistic simulation based on the experimentally verified “super-twisted”
microstructure of collagen. Our results reveal that collagen exhibits
a uniaxial polarization along the long axis of the collagen fibril.
In addition, the piezoelectric effect in collagen originates at the
collagen molecule level and is due to the mechanical stress-induced
reorientation and magnitude change of the permanent dipoles of individual
charged and polar residues. A piezoelectric constant in the range
of 1–2 pm/V (pC/N) is obtained from the simulation, which agrees
well with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.