Cloud services have recently started undergoing a major shift from monolithic applications, to graphs of hundreds of loosely-coupled microservices. Microservices fundamentally change a lot of assumptions current cloud systems are designed with, and present both opportunities and challenges when optimizing for quality of service (QoS) and utilization. In this paper we explore the implications microservices have across the cloud system stack. We first present Death-StarBench, a novel, open-source benchmark suite built with microservices that is representative of large end-to-end services, modular and extensible. DeathStarBench includes a
Energy-saving photodetectors are the key components in future photonic systems and particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs) which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built AlGaN:Pt nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defectfree wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on silicon platform.
Climate change is known to influence interannual variation in grassland aboveground net primary productivity (ANPP), or seasonal biomass, but direct, long-term ground observations are rare. We present a 22-year (1982-2003) measurement series from the Inner Mongolia grassland, China, to examine the effect of climate change on interannual variations in ANPP and monthly aboveground biomass (MAB). ANPP exhibited no increase over 1982-2003 but there was an association with previous-year precipitation. MAB in May increased by 21.8% from 47.8 g m(-2) (averaged for 1982-1984) to 58.2 g m(-2) (2001-2003), whereas there was no significant variation in June, July and August, and a decrease of 29.7% in September. The MAB increase in May was correlated with increases in precipitation and temperature in the preceding months. These findings suggest that the effects of climate change on grassland production vary throughout the growing season, with warmer and wetter springs resulting in increased biomass early in the growing season, and drier falls causing a decrease in biomass late in the growing season.
Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.