Th e biodiversity of non-volant small mammals along an extensive subtropical elevational gradient was studied for the fi rst time on Gongga Mountain, the highest mountain in Hengduan Mountain ranges in China, located in one of the 25 global biodiversity hotspots. Non-volant small mammals were replicate sampled in two seasons at eight sampling sites between 1000 and 4200 m elevation on the eastern slope of Gongga Mountain. In all, 726 individual small mammals representing 25 species were documented in 28 800 trap nights. Th e species richness pattern for non-volant small mammals along the elevational gradients was hump-shaped with highest richness at mid-elevations. However, diff erent richness patterns emerged between endemic and non-endemic species, between larger-ranged and smaller-ranged species and between rodents and insectivores. Temperature, precipitation, plant species richness and geometric constraints (middomain eff ect) were most signifi cant in explaining species richness patterns. Based on the analysis of simple ordinary least squares (OLS) and stepwise multiple regressions, the overall richness pattern, as well as the pattern of insectivores, endemic species and larger-ranged species showed strong correlation with geometric constraint predictions. However, nonendemic species richness was more strongly correlated with temperature, while rodent richness was correlated with plant species richness. Our study shows that no single key factor can explain all richness patterns of non-volant small mammals. We need to be cautious in summarizing a general richness pattern of large species groups (e.g. small mammals or mammals) from species in smaller groups having diff erent ecological distributions and life histories. Elevational richness patterns and their driving factors for small mammals are more likely dependent on what kind of species we study.
Background: Global climate change has had significant effects on animal distribution and population dynamics in mid-latitude alpine areas, but we know little about the basic ecology of high-altitude species due to the difficulties of conducting field research in the harsh climate and habitat present at high elevations. The Tibetan Snowcock (Tetraogallus tibetanus) is a little-known phasianid distributing in alpine areas at extremely high elevations in the mountains surrounding the Tibetan Plateau. Estimating the species occupancy rate and discussing the factors affecting its distribution based on infrared-triggered camera techniques would provide both a baseline to measure the influence of global warming and valuable information on its conservation and ecology. Methods: We used infrared-triggered cameras to investigate the Tibetan Snowcock on the western slope of Mt. Gongga from June to November 2016. We used the R package "overlap" to visualize its activity pattern, and used an occupancy model to both examine its habitat use as well as to determine the most influential variables affecting its habitat use. Results: Using 103 camera traps over 9213 camera-days, we recorded 428 instances of Tibetan Snowcock. The diel activity peaks of Tibetan Snowcock occurred during the periods of 8:00-10:00 am and 18:00-20:00 pm. The model estimate of occupancy for Tibetan Snowcock (0.830) was slightly higher than the naïve site occupancy based on camera detections (0.663), indicating a wider use of habitat than the camera traps recorded. Elevation, slope, settlement density, road density, and EVI (enhanced vegetation index) were the most influential variables for its habitat use. Conclusions: The Tibetan Snowcock is confirmed to be diurnal. This species prefers an environment with a high elevation, gentle slope, and low EVI, apparently facing a trade-off between predator risk, foraging efficiency, and food availability. When human impact was low, there was a positive correlation between the habitat use of the Tibetan Snowcock and both its road and settlement densities. Infrared cameras and proper survey design are valuable for investigating extreme alpine phasianids.
Aims:The Gongga Mountain National Nature Reserve lies in the global biodiversity hotspotthe Hengduan Mountains and is a priority area of biodiversity conservation in China. However, surveys of large to medium-sized mammals are insufficient in the reserve. For this reason, we conducted a camera trap survey during 2011-2018. Methods: Camera traps were placed in 97 grid cells (1 km × 1 km per cell) with a minimum distance of over 500 m and at the altitudes of 2,672-4,764 m. Only one camera was placed in a cell during the same period. Seventy grid cells •生物编目•
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.