The phase transformation of a zinc-2-methylimidazole-based zeolitic-imidazolate framework (ZIF), from a recently discovered ZIF-L to ZIF-8, was reported. ZIF-L is made up of the same building blocks as ZIF-8, having two-dimensional crystal lattices stacked layer-by-layer. Results indicated that the phase transformation occurs in the solid phase via the geometric contraction model (R2), a kinetic model new to ZIF. The phase transformation was monitored by means of ex situ powder X-ray diffraction, nitrogen sorption, Fourier transform infrared spectroscopy, selected-area electron diffraction, scanning electron microscopy, and in situ nuclear magnetic resonance spectroscopy. This work also demonstrates the first topotactic phase transformation in porous ZIFs, from a 2D layered structure to a 3D structure, and provides a new insight into metal−organic framework crystallization mechanisms.
Nanoporous titania nanoparticles (NTNs) were synthesized and used as an additive at a low concentration of 0.1−1 wt % in the fabrication of poly(ethersulfone) (PES) ultrafiltration membranes via non-solvent-induced phase separation. The structure and properties of nanoparticles were characterized using nitrogen sorption, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NTNs have a size distribution with a particle size of mainly <100 nm and have a Brunauer, Emmett, and Teller surface area of ∼100 m 2 g −1 . The modified membranes were fabricated and investigated in terms of their pure water flux, solute rejection, and fouling resistance. The water permeability and molecular weight cutoffs (MWCOs) of membranes were determined under constant-pressure filtration in dead-end mode at 100 kPa. The membrane fouling resistance was characterized under constant flux operation using bovine serum albumin as a model foulant. The membranes were characterized in terms of morphology, porosity, pore size distribution, energy-dispersive X-ray spectroscopy, contact angle goniometry, surface free energy, and viscosity of the dope solution. Overall, the modified membrane showed increased wettability and reduced surface free energy and pore size. The modified UF membrane with 0.5 wt % NTN loading exhibited improved fouling resistance (fouling rate of 0.58 kPa/min compared to a rate of 0.70 kPa/min for the control membrane) with ∼80% water flux recovery. The same membrane showed an ∼20% increase in water flux, an improvement in MWCO, and a narrower pore size distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.