In recent years, financial institutions (FIs) have tentatively utilized supply chain finance (SCF) as a means of solving the financing issues of small and medium-sized enterprises (SMEs). Thus, forecasting SMEs' credit risk in SCF has become one of the most critical issues in financing decision-making. Nevertheless, traditional credit risk forecasting models cannot meet the needs of such forecasting. Many researchers argue that machine learning (ML) approaches are good tools. Here we propose an enhanced hybrid ensemble ML approach called RS-MultiBoosting by incorporating two classic ensemble ML approaches, random subspace (RS) andMultiBoosting, to improve the accuracy of forecasting SMEs' credit risk. The experimental samples, originating from data on forty-six quoted SMEs and seven quoted core enterprises (CEs) in the Chinese securities market between 31 March 2014 and 31 December 2015, are collected to test the feasibility and effectiveness of the RS-MultiBoosting approach. The forecasting result shows that RS-MultiBoosting has good performance in dealing with a small sample size. From the SCF perspective, the results suggest that to enhance SMEs' financing ability, 'traditional' factors, such as the current and quick ratio of SMEs, remain critical. Other SCF-specific factors, for instance, the features of trade goods and the CE's profit margin, play a significant role.
Based on logistic regression (LR) and artificial neural network (ANN) methods, we construct an LR model, an ANN model and three types of a two-stage hybrid model. The two-stage hybrid model is integrated by the LR and ANN approaches. We predict the credit risk of China's small and medium-sized enterprises (SMEs) for financial institutions (FIs) in the supply chain financing (SCF) by applying the above models. In the empirical analysis, the quarterly financial and non-financial data of 77 listed SMEs and 11 listed core enterprises (CEs) in the period of 2012-2013 are chosen as the samples. The empirical results show that: (i) the "negative signal" prediction accuracy ratio of the ANN model is better than that of LR model; (ii) the two-stage hybrid model type I has a better performance of predicting "positive signals" than that of the ANN model; (iii) the two-stage hybrid model type II has a stronger ability both in aspects of predicting "positive signals" and "negative signals" than that of the two-stage hybrid model type I; and (iv) "negative signal" predictive power of the two-stage hybrid model type III is stronger than that of the two-stage hybrid model type II. In summary, the two-stage hybrid model III has the best classification capability to forecast SMEs credit risk in SCF, which can be a useful prediction tool for China's FIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.