Background/Aims: HER2 has been implicated in mammary tumorigenesis as well as aggressive tumor growth and metastasis. Its overexpression is related to a poor prognosis and chemoresistance in breast cancer patients. Although Grb2-associated binding protein 2 (Gab2) is important in the development and progression of human cancer, its effects and mechanisms in HER2-overexpressing breast cancer are unclear. Methods: Clone formation and MTT assays were used to examine cell proliferation. To detect the effect of Gab2 on the stemness of breast cancer cells, we used flow cytometry, a sphere formation assay, real-time PCR, and western blot. An animal model was created to validate the effect of Gab2 on tumor growth in vivo. Tissue slides were analyzed by immunohistochemistry. Results: Knockdown of Gab2 suppressed PI3K/AKT and MAPK/ERK pathway activity. Gab2 ablation also reduced the stemness of HER2-overexpressing breast cancer cells. In vivo, knockdown of Gab2 inhibited tumor growth. Conclusion: This study unveils a potential function of Gab2 in HER2-overexpressing breast cancer cells. Gab2 might be a potential target in the clinical therapy of HER2-overexpressing breast carcinoma.
Abstract. Pancreatic carcinoma (PC) is a deadly form of cancer with poor overall survival. Currently, chemotherapy such as gemcitabine and 5-fluorouracil (5-FU) are the most popular medications that can improve survival, but rapid drug-resistance makes the search for more effective drugs urgent. Upon looking for natural components to treat PC, it was found that arenobufagin, a cardiac glycosides-like compound, showed significant effects on the gemcitabine-resistant pancreatic carcinoma cell line Panc-1 and the gemcitabine-sensitive cell line ASPC-1 at nanomolar concentrations. The present study used MTT and clonogenic survival assays to examine survival and proliferation, and western blotting to assess changes in the associated mitogen activated protein kinase and phosphoinositide 3-kinase pathways and expression of apoptosis-related proteins. The current study also detected the cell cycle by flow cytometry. Arenobufagin inhibited cell survival and proliferation, decreased the phosphorylation of key downstream proteins of K-Ras, including protein kinase B and extracellular signal related kinase, induced cell cycle G2/M phase arrest and apoptosis, and downregulated the level of phosphorylated epidermal growth factor receptor. Notably, the present data also showed that arenobufagin can enhance the sensitivity of PC cells to gemcitabine and 5-FU. In conclusion, arenobufagin could enhance the effect of gemcitabine and 5-FU on PC cells by targeting multiple key proteins. Therefore, arenobufagin has potential as anadjuvant therapy for the treatment of PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.