Recent J-TEXT research has highlighted the significance of the role that non-axisymmetric magnetic perturbations, so called three-dimensional (3D) magnetic perturbation (MP) fields, play in a fundamentally 2D concept, i.e. tokamaks. This paper presents the J-TEXT results achieved over the last two years, especially on the impacts of 3D MP fields on magnetohydrodynamic instabilities, plasma disruptions and plasma turbulence transport. On J-TEXT, the resonant MP (RMP) system, capable of providing either a static or a high frequency (up to 8 kHz) rotating RMP field, has been upgraded by adding a new set of 12 in-vessel saddle coils. The shattered pellet injection system was built in J-TEXT in the spring of 2018. The new capabilities advance J-TEXT to be at the forefront of international magnetic fusion facilities, allowing flexible study of 3D effects and disruption mitigation in a tokamak. The fast rotating RMP field has been successfully applied for avoidance of mode locking and the prevention of plasma disruption. A new control strategy, which applies pulsed RMP to the tearing mode only during the accelerating phase region, was proved by nonlinear numerical modelling to be efficient in accelerating mode rotation and even completely suppresses the mode. Remarkably, the rotating tearing mode was completely suppressed by the electrode biasing. The impacts of 3D magnetic topology on the turbulence has been investigated on J-TEXT. It is found that the fluctuations of electron density, electron temperature and plasma potential can be significantly modulated by the island structure, and a larger fluctuation level appears at the X-point of islands. The suppression of runaway electrons during disruptions is essential to the operation of ITER, and it has been reached by utilizing the 3D magnetic perturbations on J-TEXT. This may provide an alternative mechanism of runaway suppression for large-scale tokamaks and ITER.
The Gibbs free energy released during the mixing of river and sea water has been illustrated as a promising source of clean and renewable energy. Reverse electrodialysis (RED) is one major strategy to gain electrical power from this natural salinity, and recently by utilizing nanochannels a novel mode of this approach has shown improved power density and energy converting efficiency. In this work, we carry out an electrokinetic analysis of the work extracted from RED in the nanochannels. First, we outline the exclusion potential effect induced by the inhomogeneous distribution of extra-counterions along the channel axis. This effect is unique in nanochannel RED and how to optimize it for energy harvesting is the central topic of this work. We then discuss two important indexes of performance, which are the output power density and the energy converting efficiency, and their dependence on the nanochannel parameters such as channel material and geometry. In order to yield maximized output electrical power, we propose a device design by stepwise usage of the saline bias, and the lengths of the nanochannels are optimized to achieve the best trade-off between the input thermal power and the energy converting efficiency.
The field penetration threshold of magnetic perturbations has been observed to vary non-monotonically with an increase of density in ohmic plasmas on the J-TEXT tokamak. This observation appears contradicting the previous empirical density scaling law. Disentanglement of plasma density and rotation dependences of the field penetration threshold has been carried out. It shows that the field penetration threshold depends only weakly on the density but linearly on the plasma rotation. This result is not only important for the prediction of error field tolerance in fusion devices, but also opens a question on the role of density in the forced magnetic reconnection process in magnetized plasmas.
The magnetic diagnostic of Mirnov probe arrays has been upgraded on the J-TEXT tokamak to measure the magnetohydrodynamic instabilities with higher spatial resolution and better amplitude-frequency characteristics. The upgraded Mirnov probe array contains one poloidal array with 48 probe modules and two toroidal arrays with 25 probe modules. Each probe module contains two probes which measure both the poloidal and the radial magnetic fields (B and B). To ensure that the Mirnov probe possess better amplitude-frequency characteristics, a novel kind of Mirnov probe made of low temperature co-fired ceramics is utilized. The parameters and frequency response of the probe are measured and can meet the experiment requirement. The new Mirnov arrays have been normally applied for a round of experiments, including the observation of tearing modes and their coupling as well as high frequency magnetic perturbation due to the Alfvén eigenmode. In order to extract useful information from raw signals, visualization processing methods based on singular value decomposition and cross-power spectrum are applied to decompose the coupled modes and to determine the mode number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.