Organismal aging is driven by interconnected molecular changes encompassing internal and extracellular factors. Combinational analysis of high-throughput ‘multi-omics’ datasets (gathering information from genomics, epigenomics, transcriptomics, proteomics, metabolomics and pharmacogenomics), at either populational or single-cell levels, can provide a multi-dimensional, integrated profile of the heterogeneous aging process with unprecedented throughput and detail. These new strategies allow for the exploration of the molecular profile and regulatory status of gene expression during aging, and in turn, facilitate the development of new aging interventions. With a continually growing volume of valuable aging-related data, it is necessary to establish an open and integrated database to support a wide spectrum of aging research. The Aging Atlas database aims to provide a wide range of life science researchers with valuable resources that allow access to a large-scale of gene expression and regulation datasets created by various high-throughput omics technologies. The current implementation includes five modules: transcriptomics (RNA-seq), single-cell transcriptomics (scRNA-seq), epigenomics (ChIP-seq), proteomics (protein–protein interaction), and pharmacogenomics (geroprotective compounds). Aging Atlas provides user-friendly functionalities to explore age-related changes in gene expression, as well as raw data download services. Aging Atlas is freely available at https://bigd.big.ac.cn/aging/index.
Human‐machine interfaces (HMIs) play important role in the communication between humans and robots. Touchless HMIs with high hand dexterity and hygiene hold great promise in medical applications, especially during the pandemic of coronavirus disease 2019 (COVID‐19) to reduce the spread of virus. However, current touchless HMIs are mainly restricted by limited types of gesture recognition, the requirement of wearing accessories, complex sensing platforms, light conditions, and low recognition accuracy, obstructing their practical applications. Here, an intelligent noncontact gesture‐recognition system is presented through the integration of a triboelectric touchless sensor (TTS) and deep learning technology. Combined with a deep‐learning‐based multilayer perceptron neural network, the TTS can recognize 16 different types of gestures with a high average accuracy of 96.5%. The intelligent noncontact gesture‐recognition system is further applied to control a robot for collecting throat swabs in a noncontact mode. Compared with present touchless HMIs, the proposed system can recognize diverse complex gestures by utilizing charges naturally carried on human fingers without the need of wearing accessories, complicated device structures, adequate light conditions, and achieves high recognition accuracy. This system could provide exciting opportunities to develop a new generation of touchless medical equipment, as well as touchless public facilities, smart robots, virtual reality, metaverse, etc.
A lateral flow nucleic acid biosensor based on copper-dependent DNA-cleaving DNAzyme and gold nanoparticles has been developed for the visual detection of copper ions (Cu(2+)) in an aqueous solution with a detection limit of 10 nM.
Indo‐Asian continental collision has contributed to the growth of the Tibetan Plateau, which is one of the most prominent uplifts worldwide since Cenozoic. The crustal and upper‐mantle structures are key factors in understanding the evolutionary process as well as lateral growth of the plateau. We present a new 3‐D seismic model beneath the Tibetan Plateau and its surrounding areas, which uses a large‐scale dense array from iterative finite‐frequency tomography. The new tomographic images show obvious east‐west geometrical change of the northward Indian lithosphere by high‐velocity anomalies beneath Tibet. The high‐velocity anomaly extends to Pamir in the western side, but it only reaches north Lhasa in central and eastern Tibet. A convective removal of the thickened Tibetan lithosphere is observed as a high‐velocity anomaly, followed by a subvertical subduction of the Indian mantle lithosphere beneath the Bangong‐Nujiang Suture in central Tibet. We speculate its link to the widespread magmatism and rapid uplift of central Tibet in late Miocene. A high‐velocity gap between 100 and 250 km underneath the Longmenshan fault indicates that lithospheric delamination may play an important role in surface evolution between eastern Tibet and surrounding rigid blocks. Our detailed seismological model will give an insight into how the continents collide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.