Background
N-acetylneuraminic acid (Neu5Ac) is a functional metabolite involved in coronary artery disease (CAD). We aimed to evaluate the relationship between serum Neu5Ac and the risk and prognosis of acute coronary syndrome (ACS) in a real-world prospective study.
Methods
Patients with suspected ACS who underwent coronary angiography were included. Serum Neu5Ac was measured at admission. Coronary lesion severity was evaluated by Gensini Score. GRACE risk stratification was performed at admission. Major adverse cardiac events (MACEs) were recorded during follow-up.
Results
A total of 766 patients, including 537 with unstable angina (UAP), 100 with myocardial infarction (MI), and 129 without CAD were included. The circulating Neu5Ac level was significantly higher in patients with MI (median [1QR]: 297[220, 374] ng/ml) than in those with UAP (227 [114, 312] ng/ml) or without CAD (207 [114, 276] ng/ml; both p < 0.001). Serum level of Neu5Ac was positively correlated with age, hypertension, serum uric acid, creatinine, MB isoform of creatine kinase (CK-MB), and Gensini score (all p < 0.05). Receiver operating characteristic curve analysis showed that a higher serum Neu5Ac was potentially associated with MI and high-risk GRACE stratification in ACS patients. Logistic analysis identified only elevated serum Neu5Ac as an independent predictor of MACEs in these patients (odds ratio [OR]: 1.003, 95% confidence interval [CI]: 1.002–1.005, p < 0.001).
Conclusions
Serum Neu5Ac is associated with myocardial injury, GRACE risk category, and prognosis in ACS patients.
This study is aimed at exploring whether curcumin can regulate the AKT pathway, promote the transfer of Nrf2 into the nucleus, and inhibit cell pyroptosis in diabetic cardiomyopathy. Diabetic rats and cardiomyocytes were treated with curcumin to study its effect on myocardial pyroptosis. Whether curcumin can promote the transfer of Nrf2 into the nucleus through AKT pathway regulation was assessed by western blotting and immunofluorescence. The Nrf2 knockout vector and ml385 were used to block the Nrf2 pathway, and the differences between the different groups in the expression of pyroptosis protein, cell activity, and incidence of apoptosis were evaluated to verify the relationship between the effect of curcumin on pyroptosis inhibition and the Nrf2 pathway. Curcumin promoted the transfer of Nrf2 into the nucleus through the AKT pathway and increased the expression of the antioxidant factors HO-1 and GCLC. These effects reduced reactive oxygen species accumulation and mitochondrial damage in diabetic myocardium and inhibited diabetes-induced pyroptosis. However, in cardiomyocytes with a blocked Nrf2 pathway, the ability of curcumin to inhibit pyroptosis was significantly reduced, and the protective effect on the cells was lost. Curcumin can reduce the accumulation of superoxide in the myocardium through AKT/Nrf2/ARE pathway activation and inhibit pyroptosis. It also has a role in diabetic cardiomyopathy treatment. This study provides new directions for evaluating the mechanism of diabetic cardiomyopathy and treating diabetic myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.