Ascospores are the primary inoculum in Fusarium graminearum . Interestingly, 70 of its genes have premature stop codons (PSC) and require A-to-I editing during sexual reproduction to encode full-length proteins, including the ortholog of yeast Ama1, a meiosis-specific activator of APC/C. In this study, we characterized the function of FgAMA1 and its PSC editing. FgAMA1 was specifically expressed during sexual reproduction. The Fgama1 mutant was normal in growth and perithecium formation but defective in ascospogenesis. Instead of forming four-celled, uninucleate ascospores, Fgama1 mutant produced oval, single-celled, binucleated ascospores by selfing. Some mutant ascospores began to bud and underwent additional mitosis inside asci. Expression of the wild-type or edited FgAMA1 but not the uneditable allele complemented Fgama1 . In the Fgama1 x mat-1-1 outcross, over 60% of the asci had eight Fgama1 or intermediate (elongated but single-celled) ascospores, suggesting efficient meiotic silencing of unpaired FgAMA1 . Deletion of FgPAL1 , one of the genes upregulated in Fgama1 also resulted in defects in ascospore morphology and budding. Overall, our results showed that FgAMA1 is dispensable for meiosis but important for ascospore formation and discharge. In F. graminearum , whereas some of its targets are functional during meiosis, FgAma1 may target other proteins that function after spore delimitation.
Umbilicaria muhlenbergii is the only known dimorphic lichenized fungus that grows in the hyphal form in lichen thalli but as yeast cells in axenic cultures. However, the regulation of yeast-to-hypha transition and its relationship to the establishment of symbiosis are not clear. In this study, we show that nutrient limitation and hyperosmotic stress trigger the dimorphic change in U. muhlenbergii. Contact with algal cells of its photobiont Trebouxia jamesii induced pseudohyphal growth. Treatments with the cAMP diphosphoesterase inhibitor IBMX (3-isobutyl-1-methylxanthine) induced pseudohyphal/hyphal growth and resulted in the differentiation of heavily melanized, lichen cortex-like structures in culture, indicating the role of cAMP signaling in regulating dimorphism. To confirm this observation, we identified and characterized two Gα subunits UmGPA2 and UmGPA3. Whereas deletion of UmGPA2 had only a minor effect on pseudohyphal growth, the ΔUmgpa3 mutant was defective in yeast-to-pseudohypha transition induced by hyperosmotic stress or T. jamesii cells. IBMX treatment suppressed the defect of ΔUmgpa3 in pseudohyphal growth. Transformants expressing the UmGPA3G45V or UmGPA3Q208L dominant active allele were enhanced in the yeast-to-pseudohypha transition and developed pseudohyphae under conditions noninducible to the wild type. Interestingly, T. jamesii cells in close contact with pseudohyphae of UmGPA3G45V and UmGPA3Q208L transformants often collapsed and died after coincubation for over 72 h, indicating that improperly regulated pseudohyphal growth due to dominant active mutations may disrupt the initial establishment of symbiotic interaction between the photobiont and mycobiont. Taken together, these results show that the cAMP-PKA pathway plays a critical role in regulating dimorphism and symbiosis in U. muhlenbergii.
Summary Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage‐specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage‐specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage‐specific regulation of purine metabolism during infectious growth and sexual reproduction.
Mitogen-activated protein (MAP) kinases have the hallmark motif TXY and function in key signal transduction pathways in eukaryotic organisms. Most ascogenous plant pathogenic fungi have three MAPK pathways that regulate different developmental and infection processes. In the rice blast fungus Magnaporthe oryzae, the Pmk1 and Mps1 MAP kinases with the TEY motif are essential for appressorium formation, penetration, and invasive growth. Osm1 is the third MAP kinase that has the TGY motif and functions in osmoregulation. Although orthologs of Pmk1 and Mps1 are important for pathogenesis in all the plant pathogens studied, Osm1 orthologs have species-specific roles in stress responses and pathogenesis. Because of their functions in fungal development and pathogenesis, it is important to determine the expression and activation of MAP kinases under different growth conditions or infection stages. In this chapter, we describe methods for protein extraction and detection of the activation of the three MAP kinases in M. oryzae with the commercially available anti-TpEY or anti-TpGY phosphorylation-specific antibodies. Similar approaches can be used to monitor MAP kinase activation in other plant pathogenic fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.