This study focuses on the aerodynamics of the smallest flying insects’ bristled wings. We measured and analyzed wing morphological data from 38 specimens of Mymaridae. Bristled wing flight was numerically simulated at Reynolds numbers from 1 to 80. The aerodynamic force, power, and efficiency of bristled wings using lift-based stroke, drag-based stroke, and clap-and-fling mechanism were evaluated. An unusual clap-and-fling pattern considering bristle crossing was first proposed. Our study shows that with a reduction in the wingspan of Mymaridae, the proportion of the wingtip bristled area increases. A lift-based stroke is superior to a drag-based stroke in terms of vertical force production and aerodynamic efficiency at 5 ≤ Re ≤ 20. Bristled wings employing the clap-and-fling mechanism achieve both vertical force and efficiency augmentation, while bristle crossing incurs a substantial horizontal force and contributes little to vertical force augmentation.
To enable a carrier-based unmanned aerial vehicle (UAV) to track the desired glide trajectory and safely land on the deck with the presence of system faults, this paper proposes a neural network-based adaptive sliding mode fault-tolerant control (NASFTC) method. Firstly, the dynamic model of the carrier -based UAV, the actuator fault model, the additional unknown fault model, and the control framework of the automatic carrier landing system (ACLS) were developed. Subsequently, controllers for both longitudinal and lateral channels were designed by using the NASFTC method. The controller consists of three parts: the adaptive laws for compensating the actuator faults, the RBF neural network for compensating the additional unknown faults, and the sliding mode method for ensuring overall trajectory tracking. Then, the Lyapunov function theorem was applied to carry out the stability analysis. Finally, comparative simulations under three different scenarios were conducted. The comparative results show the effectiveness of the proposed NASFTC method, which has fault-tolerant ability and can successfully control the aircraft to execute carrier landing task regardless of the actuator partial loss fault and the additional unknown fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.