Structural engineering and compositional controlling are extensively applied in rationally designing and fabricating advanced freestanding electrocatalysts. The key relationship between the spatial distribution of components and enhanced electrocatalysis performance still needs further elaborate elucidation. Here, CeO2 substrate supported CoS1.97 (CeO2‐CoS1.97) and CoS1.97 with CeO2 surface decorated (CoS1.97‐CeO2) materials are constructed to comprehensively investigate the origin of spatial architectures for the oxygen evolution reaction (OER). CeO2‐CoS1.97 exhibits a low overpotential of 264 mV at 10 mA cm−2 due to the stable heterostructure and faster mass transfer. Meanwhile, CoS1.97‐CeO2 has a smaller Tafel slope of 49 mV dec−1 through enhanced adsorption of OH−, fast electron transfer, and in situ formation of Co(IV)O2 species under the OER condition. Furthermore, operando spectroscopic characterizations combined with theoretical calculations demonstrate that spatial architectures play a distinguished role in modulating the electronic structure and promoting the reconstruction from sulfide to oxyhydroxide toward higher chemical valence. The findings highlight spatial architectures and surface reconstruction in designing advanced electrocatalytic materials.
Hollow microporous organic nanospheres (H-MONs) are prepared by using polylactide-b-polystyrene diblock copolymers (PLA-b-PS) as the precursor via a hyper-cross-linking mediated self-assembly strategy, in which the hyper-cross-linking PS block forms the microporous organic shell framework, and the degradable PLA block produces the hollow mesoporous core structure. The formation mechanism, morphology, and porosity parameters of the resulting H-MONs are systematically investigated. Moreover, based on the hyper-cross-linking generated rigid microporous organic frameworks, hollow microporous carbon nanospheres (H-MCNs) can be achieved by further pyrolysis progress. The obtained H-MCNs as electrode materials of a supercapacitor exhibit excellent electrochemical performance with specific capacitances of up to 145 F g at 0.2 A g, with almost no capacitance loss even after 5000 cycles at 10 A g. More especially, H-MONs can be further act as "nanoreactors" for the synthesis of FeO nanoparticles within hollow cores to construct magnetic core-shell FeO@H-MONs nanocomposite materials. Our strategy represents a new avenue for the preparation of hollow morphology-controlled microporous organic polymers with various potential applications.
We demonstrate a novel method that enables the formation of core-confined bottlebrush copolymers (CCBCs) as catalyst supports. Significantly, owing to the site-isolated effect, these CCBC catalysts with the incompatible acidic para-toluenesulfonic acid (PTSA) and basic 4-(dimethylamino)pyridine (DMAP) groups can conduct a simple two-step sequential reaction in one vessel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.