In the grant-free massive machine-type communication (mMTC) scenario, a key challenge is the joint device activity detection and data decoding. The sporadic nature of mMTC makes compressed sensing a promising solution to the activity detection problem. However, the typical two-phase coherent transmission scheme, which divides channel training and data decoding into two separate phases, suffers performance losses, especially when only a few bits of data are transmitted by each active device. This paper follows a newly proposed non-coherent transmission scheme in which the data bits are embedded in the pilot sequences and the BS simultaneously detects active devices and decodes the embedded data bits without explicit channel estimation. To exploit statistical channel information and the specific structure of the sparsity pattern introduced by the non-coherent transmission scheme, i.e., only one row in each section can be nonzero, we propose a receiving method based on the approximate message passing (AMP) algorithm with nonseparable minimum mean-squared error denoisers specifically designed for the problem. The corresponding state evolution equations, which can be used to predict the section error rate (SER) performance, is obtained and simplified under certain assumptions. We also derive closed-form expressions of the SER performance based on the state evolution results. Finally, numerical simulations are given to validate the accuracy of the performance analysis and to show the superiority of the proposed receiving method over the conventional method based on AMP with separable denoisers in the literature. INDEX TERMS Massive machine-type communication (mMTC), non-coherent transmission, grant-free NOMA, approximate message passing (AMP), non-separable denoiser, state evolution. I. INTRODUCTION A. MOTIVATION
Abstract-In this paper, a novel spatial modulation aided nonorthogonal multiple access (SM-NOMA) system is proposed. We use mutual information (MI) to characterize the achievable spectral efficiency (SE) of the proposed SM-NOMA system. Due to the finite-alphabet space-domain inputs employed by SM, the expression of the corresponding MI lacks a closed-form formulation. Hence, a lower bound is proposed to quantify the MI of the SM-NOMA system. Furthermore, its asymptotic property is also theoretically investigated in both low and high signal-tonoise ratio (SNR) regions. The SE performance and its analysis of our proposed SM-NOMA system are confirmed by simulation results.
Geared motor-driven lower limb exoskeletons (LLEs) are widely researched to assist paraplegic patients with spinal cord injury in recovering locomotion ability. In order to achieve a compact exoskeleton joint design while avoiding increasing the mechanical complexity of the exoskeleton frame, this study presents a design of an LLE with compact and modular actuation. A synchronous drive and a gear drive as transmissions are used to distribute hip and knee actuators, respectively, ensuring a compact axial width. The modular design of joint actuators enables it simple to separately design or select the ergonomic exoskeleton frames. A paradigm of the LLE design is comprehensively provided, including the requirement analysis, mechanical, electrical and control system design, which can be a reference of the early development of the exoskeleton prototype. The performance of the LLE is preliminarily validated by the benchtop tests including the closed-loop speed bandwidth test and the swing test and one healthy human subject experiments including walking with the LLE disenabling all motors and walking assisted by the LLE. The results of the benchtop tests validate that the LLE has enough bandwidth of closed-loop speed, satisfactory repeatability, high precision, good antijamming capability and strong torque capacity. The results of the healthy human subject experiments validate a harmonic interaction and a good integration between the user and the ergonomic mechanical system, good performance of the electrical and control system in joints motion control of the LLE. The prototype of the LLE smoothly and successfully assists the healthy human subject in walking on the level ground. The proposed LLE is promising to be applied to assist paraplegic patients in recovering the walking ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.