The lncRNA MIR4435-2 host gene (MIR4435-2HG) is located on human chromosome 2q13, and its expression is up-regulated in 18 tumors. MIR4435-2HG participates in 6 signaling pathways to promote tumorigenesis, including the TGF-β signaling pathway, Wnt/β-catenin signaling pathway, MDM2/p53 signaling pathway, PI3K/AKT signaling pathway, Hippo signaling pathway, and MAPK/ERK signaling pathway. MIR4435-2HG competitively binds with 20 miRNAs to form a complex ceRNA network, thereby regulating the expression of downstream target genes. The high expression of MIR4435-2HG is also closely related to the clinicopathological characteristics and poor prognosis of a variety of tumors. Also, the high expression of MIR4435-2HG in peripheral blood or serum has the value of predicting the risk of 9 tumors. In addition, MIR4435-2HG participates in the mechanism of action of three cancer drugs, including resveratrol for the treatment of lung cancer, cisplatin for non-small cell lung cancer and colon cancer, and carboplatin for triple-negative breast cancer. This article systematically summarizes the diagnostic and prognostic value of MIR4435-2HG in a variety of tumors and outlines the ceRNA network and signaling pathways related to MIR4435-2HG, which will provide potential directions for future MIR4435-2HG research.
Long intergenic noncoding RNA 00665 (LINC00665) is located on human chromosome 19q13.12. LINC00665 was upregulated in eighteen cancers and downregulated in two cancers. LINC00665 not only inhibits 25 miRNAs but also directly affects the stability of ten protein-coding genes. Notably, LINC00665 also encodes a micro-peptide CIP2A-BP that promotes triple-negative breast cancer progression. LINC00665 can participate in five signaling pathways to regulate cancer progression, including the Wnt/β-catenin signaling pathway, TGF-β signaling pathway, NF-κB signaling pathway, PI3K/AKT signaling pathway, and MAPK signaling pathway. Aberrant expression of LINC00665 in breast cancer, gastric cancer, and hepatocellular carcinoma can be used for disease diagnosis. In addition, aberrant expression of LINC00665 is closely associated with clinicopathological features and poor prognosis of various cancers. LINC00665 is closely associated with the effects of anticancer drugs, including gefitinib and cisplatin in non-small cell lung cancer, gemcitabine in cholangiocarcinoma, and cisplatin-paclitaxel in breast cancer. This work systematically summarizes the diagnostic and prognostic values of LINC00665 in various tumors, and comprehensively analyzes the molecular regulatory mechanism related to LINC00665, which is expected to provide clear guidance for future research.
miRNAs play an important role in the occurrence and development of human cancer. Among them, hsa-mir-1269a and hsa-mir-1269b are located on human chromosomes 4 and 17, respectively, and their mature miRNAs (miR-1269a and miR-1269b) have the same sequence. miR-1269a is overexpressed in 9 cancers. The high expression of miR-1269a not only has diagnostic significance in hepatocellular carcinoma and non-small cell lung cancer but also is related to the poor prognosis of cancer patients such as esophageal cancer, hepatocellular carcinoma, and glioma. miR-1269a can target 8 downstream genes (CXCL9, SOX6, FOXO1, ATRX, RASSF9, SMAD7, HOXD10, and VASH1). The expression of miR-1269a is regulated by three non-coding RNAs (RP11-1094M14.8, LINC00261, and circASS1). miR-1269a participates in the regulation of the TGF-β signaling pathway, PI3K/AKT signaling pathway, p53 signaling pathway, and caspase-9-mediated apoptotic pathway, thereby affecting the occurrence and development of cancer. There are fewer studies on miR-1269b compared to miR-1269a. miR-1269b is highly expressed in hepatocellular carcinoma, non-small cell lung cancer, oral squamous cell carcinoma, and pharyngeal squamous cell carcinoma, but miR-1269b is low expressed in gastric cancer. miR-1269b can target downstream genes (METTL3, CDC40, SVEP1, and PTEN) and regulate the PI3K/AKT signaling pathway. In addition, sequence mutations on miR-1269a and miR-1269b can affect their regulation of cancer. The current studies have shown that miR-1269a and miR-1269b have the potential to be diagnostic and prognostic markers for cancer. Future research on miR-1269a and miR-1269b can focus on elucidating more of their upstream and downstream genes and exploring the clinical application value of miR-1269a and miR-1269b.At present, there is no systematic summary of the research on miR-1269a and miR-1269b. This paper aims to comprehensively analyze the abnormal expression, diagnostic and prognostic value, and molecular regulatory pathways of miR-1269a and miR-1269b in multiple cancers. The overview in our work can provide useful clues and directions for future related research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.