In modern economic conditions, the chosen technology of raw material processing and the choice of the necessary equipment for both the line as a whole and the oil press are of great importance in oil production. In small-capacity workshops, screw presses of various designs are used. The twin-screw extruder occupied a certain niche among the press equipment with a productivity of 150–500 kg/h. Their use can significantly simplify the technology of oilseed processing. They combine operations of heat treatment, grinding, and pressing of vegetable oil. It is important to study the influence of geometric parameters of the oil pressure path and screw nozzle on the oil yield. In twin-screw extruders, it is rational to choose the pitch of the worm, the width of the channel between the turns, the width of the crest of the turn and the length of the nozzle with variable geometrical parameters. The analysis and selection of geometrical parameters of working bodies of a twin-screw extruder on the basis of theoretical calculations are carried out. Two sets of experimental working bodies with the changed geometrical parameters are made. Their theoretical degree of compression is determined, which is 5.50, 4.69, and 4.33, respectively. It is experimentally confirmed that the oil yield depends on the degree of compression due to the geometric parameters of the screw. The effect of a sharp drop in the free volume of the screw on the energy performance and press extruder performance has been revealed. The general nature of the change in the free volume in the areas of nozzle groups is accompanied by an uneven decrease of 40–80% towards the release of oil cake. The nature of the change in the free volume of turns along the length of the screw shaft characterizes the correctness of its design. The selection of rational geometric parameters of the working bodies should be considered in combination with other design parameters, which will intensify the process of oil pressing.
The processes of mixing, whipping, and foaming are essentially uniform and consist in dispersing the gas in a liquid. When mixing and whipping, the mixture of components is swollen due to the mechanical action; increased in volume water-insoluble protein substances (gluten proteins) form a three-dimensional spongy mesh continuous structure. It is called a gluten frame. It determines the elastic and resilient properties of the medium. Therefore, the purpose of the study is to establish the relationship between the gas holding capacity of the medium and the energy expended on the hydration of the components. The study solves the task of determining the gas holding capacity of the medium with variable parameters of the height of the liquid phase from the mixing intensity, the duration of transient processes for the formation of the full volume of the gas-liquid medium, the duration of the transient process for the dispersed gas phase yield. The difference between the levels before the gas phase formation and during the mixing (aeration) mode determines the value of the gas holding capacity. In this context, we concluded that it is expedient to completely destabilize the established modes by changing the operating modes in the working body in the flow system. An additional effect on the system is the change of hydrodynamic regimes due to the unstable dynamics of the dispersed gas phase formation. The generation of the dispersed gas phase means the presence of energy expenditure on the interphase layer formation, which should be considered in the total energy balance. At the same time, another feature should be mentioned. Part of the gas phase, which existed and continues to exist in the new mode after mixing, enters the mode of a transient process. Therefore, the most effective mixing occurs while adhering to the shifted mode for dosing components in a suspended state and the mechanical impact of the working body. Based on the given objectives and conditions of sponge dough mixing, we determined the requirements for the mixer design and found that the supply of components should last at least 45 seconds. During this period, hydration occurs and energy consumption is declining.
The main effects of the developed design for vibratory separator: the increased driving force in the process of bulk material separation in this work, achieved by providing the working cylindrical-conical container with vibrational motion; improving the conditions for the passage of product particles through openings, achieved by providing the sieve surface with volume oscillations; reduction of energy consumption and improvement of operating conditions for support nodes during the operation of the designed vibrating screen, achieved due to the installation of additional elastic elements between the separator body and bearing assemblies of the vertical drive shaft in vibration exciter. Providing the working bodies of the designed vibrating screen with volume oscillating motion allows increasing the performance and quality of the separation process of solid bulk materials. To determine the rational parameters for vibration screening process, the equations of motion of working bodies as a conical sieve surface were obtained using the method of the Lagrange equations of the second order. When applying solutions of the Cauchy problem for linear nonhomogeneous differential equations, the solution of the latter was obtained. The obtained dependences of oscillation amplitudes, vibration velocity and vibration acceleration, and the intensity of oscillating motion allowed us to perform a mathematical analysis for power and energy parameters of vibration drive in the developed separator. The inclined placement of the conical sieve surface allows for spatial gyration or circular translational motion, which makes it possible to realize the advantages of volumetric separation of bulk materials. The results of the conducted analytical study made it possible to substantiate the optimal inclination angle for working sieve surface. Based on our analysis, the design parameters of vibration exciter were substantiated and clarified, and the design of this technical system was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.