Three-dimensional (3D) multicellular spheroids (MCSs) mimic the structure and function of real tissue much better than the conventional 2D cell monolayers, however, their application was severely hindered by difficulties in their generation. An ideal method for MCS fabrication should produce spheroids with narrow size distribution and allow for control over their size. The method should also be simple, cheap, and scalable. Here, we use patterned nonadhesive poly(2-hydroxyethyl methacrylate) hydrogel films to guide the self-assembly of cells. The films were fabricated directly in the wells of cell culture plates. They were patterned spontaneously by swelling in water, without the use of any template or specialized facilities. When cell suspension is added, the cells settle down by gravity to the bottom. Because of the presence of the wrinkling pattern composed of uniformed microcaves, the cells accumulate to the center of the microcaves and gradually self-assemble into MCSs. Using this method, monodisperse MCSs were generated. The size of the spheroids can be facilely controlled by the number of cells seeded. The method is compatible with the conventional monolayer cell culture method. Thousands of spheroids can be generated in a single well. We expect this method will pave the way for the application of MCSs in various biomedical areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.