The design and synthesis of high-quality two-dimensional (2D) materials with desired morphology are essential for property control. One critical challenge that impedes the understanding and control of 2D crystal nucleation and growth is the inability of direct observation of the nanocrystal evolution process with high enough time resolution. Here, we demonstrated an in situ X-ray scattering approach that directly reveals 2D wurtzite ZnO nanosheet growth at the air−water interface. The time-resolved grazing incidence X-ray diffraction (GID) and grazing incidence X-ray off-specular scattering (GIXOS) results uncovered a lateral to vertical growth kinetics switch phenomenon in the ZnO nanosheet growth. This switch represents the 2D to three-dimensional (3D) crystal structure evolution, which governs the size and thickness of nanosheets, respectively. This phenomenon can guide 2D nanocrystal synthesis with rationally controlled size and thickness. Our work opens a new pathway toward the understanding of 2D nanomaterial growth kinetics based on time-resolved liquid surface grazing incidence X-ray techniques.
Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibil-ity and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their...
Two-dimensional (2D) piezoelectric materials have recently drawn intense interest in studying the nanoscale electromechanical coupling phenomenon and device development. A critical knowledge gap exists to correlate the nanoscale piezoelectric property with the static strains often found in 2D materials. Here, we present a study of the out-of-plane piezoelectric property of nanometer-thick 2D ZnO-nanosheets (NS) in correlation to in-plane strains, using in situ via strain-correlated piezoresponse force microscopy (PFM). We show that the strain configuration (either tensile or compressive) can dramatically influence the measured piezoelectric coefficient (d 33 ) of 2D ZnO-NS. A comparison of the out-of-plane piezoresponse is made for in-plane tensile and compressive strains approaching 0.50%, where the measured d 33 varies between 2.1 and 20.3 pm V −1 resulting in an order-of-magnitude change in the piezoelectric property. These results highlight the important role of in-plane strain in the quantification and application of 2D piezoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.