The combined suppression of only two genes, γ kafirin-1 (25 kDa) and γ-kafirin-2 (50 kDa), significantly increases sorghum kafirin in vitro digestibility. Co-suppression of a third gene, α-kafirin A1 (25 kDa), in addition to the two genes increases the digestibility further. The high-digestibility trait has previously only been obtained either through the co-suppression of six kafirin genes (α-A1, 25 kDa; α-B1, 19 kDa; α-B2, 22 kDa; γ-kaf1, 27 kDa; γ-kaf 2, 50 kDa; and δ-kaf 2, 18 kDa) or through random chemical-induced mutations (for example, the high protein digestibility mutant). We present further evidence that suppressing just three of these genes alters kafirin protein cross-linking and protein body microstructure to an irregularly invaginated phenotype. The irregular invaginations are consistent with high pepsin enzyme accessibility and hence high digestibility. The approach we adopted towards increasing sorghum protein digestibility appears to be an effective tool in improving the status of sorghum as a principal supplier of energy and protein in poor communities residing in marginal agro-ecological zones of Africa.
TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS (Hordeum—TILLING—University of Silesia) population created for spring barley cultivar “Sebastian” after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072–6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.
Tuberculosis remains a leading cause
of death from a single bacterial
infection worldwide. Efforts to develop new treatment options call
for expansion into an unexplored target space to expand the drug pipeline
and bypass resistance to current antibiotics. Lipoamide dehydrogenase
is a metabolic and antioxidant enzyme critical for mycobacterial growth
and survival in mice. Sulfonamide analogs were previously identified
as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria.
Here we present the development of analogs with improved permeability,
potency, and selectivity, which inhibit the growth of Mycobacterium
tuberculosis in axenic culture on carbohydrates and within
mouse primary macrophages. They increase intrabacterial pyruvate levels,
supporting their on-target activity within mycobacteria. Distinct
modalities of binding between the mycobacterial and human enzymes
contribute to improved potency and hence selectivity through induced-fit
tight binding interactions within the mycobacterial but not human
enzyme, as indicated by kinetic analysis and crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.