Unmanned combat air vehicle (UCAV) path planning aims to calculate the optimal or suboptimal flight path considering the different threats and constraints under the complex battlefield environment. This flight path can help the UCAV avoid enemy threats and improve the efficiency of the investigation. This paper presents a new quantum wind driven optimization (QWDO) for the path planning of UCAV. QWDO algorithm uses quantum rotation gate strategy on population evolution and the quantum non-gate strategy to realize the individual variation of population. These operations improve the diversity of population and avoid premature convergence. This paper tests this optimization in two instances. The experimental results show that the proposed algorithm is feasible in these two cases. Compared to quantum bat algorithm (QBA), quantum particle swarm optimization (QPSO), wind driven optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and differential evolution (DE), the QWDO algorithm exhibited better performance. The simulation results demonstrate that the QWDO algorithm is an effective and feasible method for solving UCAV path planning.Keywords: wind driven optimization (WDO); unmanned combat air vehicle (UCAV); path planning; quantum wind driven optimization (QWDO)
OPEN ACCESSAppl. Sci. 2015Sci. , 5 1458
This paper presents a new hybrid global optimization algorithm, which is based on the wind driven optimization (WDO) and differential evolution (DE), named WDO-DE algorithm. The WDO-DE algorithm is based on a double population evolution strategy, the individuals in a population evolved by wind driven optimization algorithm, and a population of individuals evolved from difference operation. The populations of individuals both in WDO and DE employ an information sharing mechanism to implement coevolution. This paper chose fifteen benchmark functions to have a test. The experimental results show that the proposed algorithm can be feasible in both low-dimensional and high-dimensional cases. Compared to GA-PSO, WDO, DE, PSO, and BA algorithm, the convergence speed and precision of WDO-DE are higher. This hybridization showed a better optimization performance and robustness and significantly improves the original WDO algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.