A radiofrequency (RF) ion source with a megawatt power extraction, thunder I, has been developed for the neutral beam injector (NBI) on HL-2A tokamak. A full solid-state RF generator with output power of 80 kW and frequency of 2 MHz was built by an RF combiner using 8 modules of solid-state RF generator with power of P
RF = 10 kW. The line electric efficiency of whole RF generator reaches 92% and its voltage standing wave ratio (VSWR) is 1.01, thus no water-cooling system is supplied. A quartz vessel with the inner diameter of 250 mm is directly adopted for resisting atmospheric pressure, which can dramatically simplify source structure. Nowadays, the extracted beam parameters of RF hydrogen ion source are 32 kV/20 A/0.1 s on a test bed, while the design parameters are 50 kV/20 A/3 s. The beam density profile measured by the infrared imaging technique at 1.3 m downstream from the grounded grid obeys a Gaussian distribution, and the corresponding half width of 1/e power decay at the matched condition is about 80 mm. Plasma homogeneity is over 90% at low RF power. The beam divergence angle meets the requirement of NBI system on HL-2A tokamak. The extractable current density increases almost linearly with the RF power. It reaches 2400 A m−2 at P
RF = 32 kW. The ion density in front of plasma grid is about 1 × 1018 m−3, corresponding to an ionized fraction of about 1% at the gas pressure of 0.5 Pa. Single hydrogen ion fraction reaches 79% at the beam current of 12.4 A. Some improvements have been considered for optimizing ion source performance on next experimental campaign. One smaller auxiliary RF discharge chamber equipped with a gas feed path, driven by 13.56 MHz/3.5 kW generator, is connected to main discharge chamber driven by 2 MHz/40 kW generator. By this dual-driven configuration, the innovative RF plasma source with high-pressure density gradient solves the initial ignition problem of powerful RF ion source even if the gas pressure below 0.1 Pa. In addition, the RF negative hydrogen ion source of 200 kV/20 A/3600 s is also developed at SWIP for the China fusion engineering test reactor.
An experiment at the HL-2A tokamak with a high-energy deuterium neutral beam (NB) injection (30 keV, about 0.6 MW) was performed. The emission of d-d fusion neutrons dominated by beam-plasmas reactions when the deuterium NB was injected into the deuterium target plasma was observed by means of a 235 U fission chamber. To obtain information on NB deposition and the slowing down of beam ions in HL-2A plasmas, a very short-pulse deuterium NB injection, or the so-called "blip" injection, was performed into MHD-quiescent Ohmic deuterium plasmas. Analysis of neutron decay following the NB "blip" injection indicates that tangentially injected beam ions are well confined, slowing down classically in the HL-2A. In contrast to the MHD-quiescent plasma, anomalous losses of beam ions were observed when tearing mode instabilities were present.
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.