No abstract
Heat shock protein 70 (HSP70) is one of the most abundant chaperone proteins. Their function is well documented in facilitating the protein synthesis, translocation, de novo folding, and ordering of multiprotein complexes. HSP70 in bovine consists of four genes: HSP70-1, HSP70-2, HSP70-3, and HSP70-4. HSP70-2 was found to be involved in fertility. Current knowledge implicates HSP70-2 in sperm quality, sperm capacitation, sperm–egg recognition, and fertilization essential for bull reproduction. HSP70-2 is also involved in the biological processes of spermatogenesis, as it protects cells from the effects of apoptosis and oxidative stress. Fertilization success is not only determined by the amount of sperm found in the female reproductive tract but also by the functional ability of the sperm. However, subfertility is more likely to be associated with changes in sperm molecular dynamics not detectable using conventional methods. As such, molecular analyses and omics methods have been developed to monitor crucial aspects of sperm molecular morphology that are important for sperm functions, which are the objectives of this review.
Objective: This study aims to identify heat shock protein70-2 (HSP70-2) and protamine-1 (PRM1) mRNA and protein in Madura bull sperm and demonstrate their relation as bull fertility biomarkers.Methods: The Madura bull fertility rates were grouped based on the percentage of first service conception rate (%FSCR) as high fertility (HF) (79.04%; n = 4), and low fertility (LF) (65.84%; n = 4). mRNA of HSP70-2 and PRM1 with peptidylprolyl isomerase A (PPIA) as a housekeeping gene were determined by quantitative real-time polymerase chain reaction, while enzyme-linked immunoassay was used to measure protein abundance. In the post-thawed semen samples, sperm motility, viability, acrosome integrity, and sperm DNA fragmentation index were analyzed. Data analysis was performed on the measured parameters of semen quality, relative mRNA expression, and protein abundance of HSP70-2 and PRM1, among the bulls with various fertility levels (HF and LF) in a one-way analysis of variance analysis. The Pearson correlation was used to analyze the relationship between semen quality, mRNA, proteins, and fertility rate.Results: Relative mRNA expression and protein abundance of HSP70-2 and PRM1 were detected and were found to be highly expressed in bulls with HF (p<0.05) and were associated with several parameters of semen quality.Conclusion: HSP70-2 and PRM1 mRNA and protein molecules have great potential to serve as molecular markers for determining bull fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.