We formulate an optimal stopping problem for a geometric Brownian motion where the probability scale is distorted by a general nonlinear function. The problem is inherently time inconsistent due to the Choquet integration involved. We develop a new approach, based on a reformulation of the problem where one optimally chooses the probability distribution or quantile function of the stopped state. An optimal stopping time can then be recovered from the obtained distribution/quantile function, either in a straightforward way for several important cases or in general via the Skorokhod embedding. This approach enables us to solve the problem in a fairly general manner with different shapes of the payoff and probability distortion functions. We also discuss economical interpretations of the results. In particular, we justify several liquidation strategies widely adopted in stock trading, including those of "buy and hold", "cut loss or take profit", "cut loss and let profit run" and "sell on a percentage of historical high".Comment: Published in at http://dx.doi.org/10.1214/11-AAP838 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
We formulate an optimal stopping problem for a geometric Brownian motion where the probability scale is distorted by a general nonlinear function. The problem * We are grateful for comments from seminar and conference participants at Oxford, ETH, University The main part of this author's work was carried out when he was a Nomura Fellow at the Nomura Centre 1 This is the Pre-Published Version.is inherently time inconsistent due to the Choquet integration involved. We develop a new approach, based on a reformulation of the problem where one optimally chooses the probability distribution or quantile function of the stopped state. An optimal stopping time can then be recovered from the obtained distribution/quantile function, either in a straightforward way for several important cases or in general via the Skorokhod embedding. This approach enables us to solve the problem in a fairly general manner with different shapes of the payoff and probability distortion functions. We also discuss economical interpretations of the results. In particular,we justify several liquidation strategies widely adopted in stock trading, including those of "buy and hold", "cut loss or take profit", "cut loss and let profit run", and "sell on a percentage of historical high".
A continuous-time financial portfolio selection model with expected utility maximization typically boils down to solving a (static) convex stochastic optimization problem in terms of the terminal wealth, with a budget constraint. In literature the latter is solved by assuming a priori that the problem is well-posed (i.e., the supremum value is finite) and a Lagrange multiplier exists (and as a consequence the optimal solution is attainable). In this paper it is first shown that, via various counter-examples, neither of these two assumptions needs to hold, and an optimal solution does not necessarily exist. These anomalies in turn have important interpretations in and impacts on the portfolio selection modeling and solutions. Relations among the non-existence of the Lagrange multiplier, the ill-posedness of the problem, and the non-attainability of an optimal solution are then investigated. Finally, explicit and easily verifiable conditions are derived which lead to finding the unique optimal solution.
Many investment models in discrete or continuous-time settings boil down to maximizing an objective of the quantile function of the decision variable. This quantile optimization problem is known as the quantile formulation of the original investment problem. Under certain monotonicity assumptions, several schemes to solve such quantile optimization problems have been proposed in the literature. In this paper, we propose a change-of-variable and relaxation method to solve the quantile optimization problems without using the calculus of variations or making any monotonicity assumptions. The method is demonstrated through a portfolio choice problem under rank-dependent utility theory (RDUT). We show that this problem is equivalent to a classical Merton's portfolio choice problem under expected utility theory with the same utility function but a different pricing kernel explicitly determined by the given pricing kernel and probability weighting function. With this result, the feasibility, well-posedness, attainability and uniqueness issues for the portfolio choice problem under RDUT are solved. It is also shown that solving functional optimization problems may reduce to solving probabilistic optimization problems. The method is applicable to general models with law-invariant preference measures including portfolio choice models under cumulative prospect theory (CPT) or RDUT, Yaari's dual model, Lopes' SP/A model, and optimal stopping models under CPT or RDUT.
Bernard, He, Yan, and Zhou (Mathematical Finance, 25(1), 154-186) studied an optimal insurance design problem where an individual's preference is of the rank-dependent utility (RDU) type, and show that in general an optimal contract covers both large and small losses. However, their results suffer from the unrealistic assumption that the random loss has no atom, as well as a problem of moral hazard that provides incentives for the insured to falsely report the actual loss. This paper addresses these setbacks by removing the nonatomic assumption, and by exogenously imposing the "incentive compatibility" constraint that both indemnity function and insured's retention function are increasing with respect to the loss. We characterize the optimal solutions via calculus of variations, and then apply the result to obtain explicitly expressed contracts for problems with Yaari's dual criterion and general RDU.Finally, we use numerical examples to compare the results between ours and Bernard et al. K E Y W O R D Sincentive compatibility, indemnity function, moral hazard, optimal insurance design, probability weighting function, quantile formulation, rankdependent utility theory, retention function
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.