In this paper, we present a full velocity difference model for a car-following theory based on the previous models in the literature. To our knowledge, the model is an improvement over the previous ones theoretically, because it considers more aspects in car-following process than others. This point is verified by numerical simulation. Then we investigate the property of the model using both analytic and numerical methods, and find that the model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion.
DRAM row-buffer conflicts occur when a sequence of requests on different rows goes to the same memory bank, causing much higher memory access latency than requests to the same row or to different banks. In this paper, we analyze the sources of row-buffer conflicts in the context of superscalar processors, and propose a permutation-based page interleaving scheme to reduce row-buffer conflicts and to exploit data access locality in the row-buffer. Compared with several existing schemes, we show that the permutation-based scheme dramatically increases the hit rates on DRAM row-buffers and reduces memory stall time of the SPEC95 and TPC-C workloads. The memory stall times of the workloads are reduced up to 68% and 50%, compared with the conventional cache line and page interleaving schemes, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.