The electrospun chitosan nanofibers provide excellent material for immobilized proteolytic enzymes, and are biocompatible, nontoxic and hydrophilic matrices with large specific area. This paper deals with an application of electrospun chitosan nanofibers and optimizing conditions for their biofunctionalization by model proteolytic enzyme trypsin. Nanofibers from chitosan were prepared using Nanospider TM technology and covalent immobilization of trypsin followed. Three immobilization techniques preserving biocompatibility and utilizing amine and/or hydroxyl groups of chitosan were optimized and compared to simple adsorption to achieve maximum proteolytic activity per cm 2 of the functionalized chitosan nanofibers (Tryp-NF). Significant differences were observed. Trypsin immobilized by the carbodiimide one-step protocol demonstrated the highest activity of the three procedures, ranging from 132 to 210 IU/cm 2 (i.e., 548-874 IU/mg of nanofibers), depending on the initial amount of trypsin used. Long-term storage stability together with high reusability of Tryp-NF confirmed advantages of the immobilized enzyme. Tryp-NF showed no cytotoxicity toward growth of HeLa cells. The in vivo tests for irritation and skin sensitization demonstrated no undesirable skin reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.