The electrospun chitosan nanofibers provide excellent material for immobilized proteolytic enzymes, and are biocompatible, nontoxic and hydrophilic matrices with large specific area. This paper deals with an application of electrospun chitosan nanofibers and optimizing conditions for their biofunctionalization by model proteolytic enzyme trypsin. Nanofibers from chitosan were prepared using Nanospider TM technology and covalent immobilization of trypsin followed. Three immobilization techniques preserving biocompatibility and utilizing amine and/or hydroxyl groups of chitosan were optimized and compared to simple adsorption to achieve maximum proteolytic activity per cm 2 of the functionalized chitosan nanofibers (Tryp-NF). Significant differences were observed. Trypsin immobilized by the carbodiimide one-step protocol demonstrated the highest activity of the three procedures, ranging from 132 to 210 IU/cm 2 (i.e., 548-874 IU/mg of nanofibers), depending on the initial amount of trypsin used. Long-term storage stability together with high reusability of Tryp-NF confirmed advantages of the immobilized enzyme. Tryp-NF showed no cytotoxicity toward growth of HeLa cells. The in vivo tests for irritation and skin sensitization demonstrated no undesirable skin reactions.
The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (μMSFB), developed for the capture and on‐chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti‐Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti‐Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the μMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.