SummaryCollective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents.
Activation of the complement system generates potent chemoattractants and opsonizes cells for immune clearance. Short-lived protease complexes cleave complement component C3 into anaphylatoxin C3a and opsonin C3b. Here we report the crystal structure of the C3 convertase formed by C3b and the protease fragment Bb, which was stabilized by the bacterial immune-evasion protein SCIN. The data suggest that the proteolytic specificity and activity depends on dimerization of C3 with C3b of the convertase. SCIN blocked the formation of a productive enzyme-substrate complex. Irreversible dissociation of C3bBb is crucial to complement regulation and was determined by slow binding kinetics of the Mg2+-adhesion site in Bb. Understanding the mechanistic basis of the central complement activation step and microbial immune evasion strategies targeting this step will aid the development of complement therapeutics.
Activation of the complement cascade induces inflammatory responses and marks cells for immune clearance. In the central complement-amplification step, a complex consisting of surface-bound C3b and factor B is cleaved by factor D to generate active convertases on targeted surfaces. We present crystal structures of the pro-convertase C3bB at 4 angstrom resolution and its complex with factor D at 3.5 angstrom resolution. Our data show how factor B binding to C3b forms an open “activation” state of C3bB. Factor D specifically binds the open conformation of factor B through a site distant from the catalytic center and is activated by the substrate, which displaces factor D’s self-inhibitory loop. This concerted proteolytic mechanism, which is cofactor-dependent and substrate-induced, restricts complement amplification to C3b-tagged target cells.
The C5a anaphylatoxin receptor (C5aR; CD88) is activated as part of the complement cascade and exerts important inflammatory, antimicrobial, and regulatory functions, at least in part, via crosstalk with TLRs. However, the periodontal pathogen Porphyromonas gingivalis can control C5aR activation by generating C5a through its own C5 convertase-like enzymatic activity. In this paper, we show that P. gingivalis uses this mechanism to proactively and selectively inhibit TLR2-induced IL-12p70, whereas the same pathogen-instigated C5aR-TLR2 crosstalk upregulates other inflammatory and bone-resorptive cytokines (IL-1β, IL-6, and TNF-α). In vivo, the ability of P. gingivalis to manipulate TLR2 activation via the C5a-C5aR axis allowed it to escape IL-12p70–dependent immune clearance and to cause inflammatory bone loss in a murine model of experimental periodontitis. In the latter regard, C5aR-deficient or TLR2-deficient mice were both resistant to periodontal bone loss, in stark contrast with wild-type control mice, which is consistent with the interdependent interactions of C5aR and TLR2 in P. gingivalis immune evasion and induction of bone-resorptive cytokines. In conclusion, P. gingivalis targets C5aR to promote its adaptive fitness and cause periodontal disease. Given the current availability of safe and effective C5aR antagonists, pharmacological blockade of C5aR could act therapeutically in human periodontitis and reduce associated systemic risks.
Therapeutic modulation of the complement system has become increasingly important in line with the growing recognition of the role of complement in numerous diseases. Compstatin, a peptidic inhibitor that acts at the central level of the complement cascade, is currently in clinical evaluation but routes to improve its efficacy have not yet been fully explored. Here, we report improvements in both the inhibitory potency and pharmacokinetic parameters of compstatin that broaden its clinical applications. Selective modification of the compstatin N-terminus with non-proteinogenic amino acids resulted in the first analogue with subnanomolar binding affinity (KD = 0.5 nM) and other similarly potent derivatives with improved solubility in clinically relevant solvents. Detailed structure-activity relationship studies based on biophysical and computational methods revealed key structural determinants for the observed improvements. Importantly, pharmacokinetic evaluation in non-human primates revealed target-driven elimination kinetics with plasma half-life values exceeding expectations for peptidic drugs (close to 12 hours). This successful optimization strategy is expected to pave the way for systemic administration of compstatin in a range of clinical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.