In the paper the template synthesis of ferromagnetic (Fe, Co, Ni) nanotubes in the pores of track membranes were studied. The aim of this work was determination of nanotubes basic structural and magnetic parameters and demonstration of the possibility of application in the flexible electronics elements.By electrochemical deposition, ferromagnetic nanotubes with a diameter of 110 nm and an aspect ratio of 100 were formed in the pores of polyethylene terephthalate track membranes. The morphology of the obtained nanostructures were studied by scanning electron microscopy, the elemental composition was determined by the energy-dispersion analysis. Using the X-ray structural analysis, the main parameters of the crystal structure were established: lattice type, lattice parameter and average crystallite size. The magnetic properties were studied by the method of vibrational magnetometry.It was shown that in the selected conditions of synthesis without reference to the type of ferromagnetic metals nanotubes had the same dimensions – length, diameter and wall thickness. The produced nanotubes consisted of iron, cobalt and nickel, respectively without oxides impurities. Nanotubes had a polycrystalline structure of walls with a body-centered cubic (iron), face-centered cubic (cobalt and nickel) crystal lattice. According to the main magnetic parameters, nanotubes belonged to a group of soft magnetic materials. Also, the presence of magnetic anisotropy, which is caused by the features of crystalline structure and shape of the nanostructures.Based on the analysis of structural and magnetic characteristics of ferromagnetic nanotubes which were synthesized in the pores of track membranes, were proposed the main principles of their using in the elements’ of flexible electronics constructing (magnetic field direction sensors and magnetic memory elements).
Iron and iron-cobalt nanostructures that were synthesized in polymer ion-track membranes have been studied via Mössbauer spectroscopy combined with raster electron microscopy, energy-dispersion analysis, and X-ray diffraction data. The obtained nanostructures are single-phase bcc Fe 1 -x Co x nanotubes with a high degree of polycrystallinity, whose length is 12 μm; their diameter is 110 ± 3 nm and the wall thickness is 21 ± 2 nm. Fe 2+ and Fe 3+ cations were detected in the nanotubes, which belong to iron salts that were used and formed in the electrochemical deposition. The Fe nanotubes exhibit eventual magnetic moment direction distributions of Fe atoms, whereas Fe/Co nanotubes have a partial magnetic structure along the nanotube axis with a mean value of the angle between the magnetic moment and nanotube axis of 34° ± 2°. Substituting the Fe atom with Co in the nearest environment of the Fe atom within the Fe/Co structure of nanotubes leads to a noticeable increase in the hyperfine magnetic field at the 57 Fe nuclei (by 8.7 ± 0.4 kOe) and to a slight decrease in the shift of the Mössbauer line (by 0.005 ± 0.004 mm/s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.