BACKGROUND: Diabetes mellitus is frequently associated with microcirculation pathology and hemorheological disorders. METHODS: 24 patients with diabetic foot and 22 healthy subjects were recruited. RBC aggregation, disaggregation and morphology of aggregates were determined in autologous plasma and serum.
RESULTS:The RBC aggregation in patients with diabetic foot increased in autologous plasma and serum. Increased red blood cell aggregate strength in these patients was observed only in autologous plasma. Microscopic images of RBC aggregates of patients with diabetic foot show the formation of pathologic globular structures of aggregates in autologous plasma and serum.
CONCLUSION:The RBC aggregation in autologous plasma and autologous serum in patients with diabetic foot is significantly higher than in healthy subjects. Increase in strength of RBC aggregates in diabetic foot patients was observed only in autologous plasma. The microscopic images of RBC aggregates in patients with diabetic foot indicate the formation of globular (pathologic) structures of aggregates in autologous plasma and serum. The differences in the morphology of RBC aggregates in autologous plasma and serum between healthy subjects and diabetic foot patients, obtained by microscopic image analysis with high magnification light microscope, can be used as an additional diagnostic tool in medical practice.
The aim of the study was to assess the effect of external use of inert gases (helium and argon) on the state of free radical processes in vivo. The experiment was performed on 30 male Wistar stock rats (age-3 months, weight–200-220 g.), randomly distributed into 3 equal groups. The first group of animals was intact (
n
=
10
). The animals of the second and third groups were treated with argon and helium streams, respectively. Our research has allowed us to establish that the studied inert gases have a modulating effect on the state of oxidative metabolism of rat blood, and the nature of this effect is directly determined by the type of gas. The results of this study allowed us to establish the potential antioxidant effect of the helium stream, mainly realized due to the activation of the catalytic properties of the enzymatic link of the antioxidant system of rat blood plasma. At the same time, the revealed features of shifts in oxidative metabolism during treatment with argon flow include not only stimulation of the antioxidant system but also the pronounced induction of free radical oxidation. Thus, the conducted studies made it possible to verify the specificity of the response of the oxidative metabolism of blood plasma to the use of inert gases, depending on their type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.