В статье дается обзор недавних исследований, связанных с задачей Монжа-Канторовича. Приведены основные результаты о существовании решений и их свойствах как в задаче Монжа об оптимальной транспортировке, так и в задаче Канторовича об оптимальном плане, а также результаты о связях между обеими задачами и случаях их равносильности. Рассказано о многообразных приложениях этих задач в нелинейном анализе, теории вероятностей, дифференциальной геометрии. Библиография: 193 названия.
We study topological spaces with the strong Skorokhod property, i.e., spaces on which all Radon probability measures can be simultaneously represented as images of Lebesgue measure on the unit interval under certain Borel mappings so that weakly convergent sequences of measures correspond to almost everywhere convergent sequences of mappings. We construct nonmetrizable spaces with such a property and investigate the relations between the Skorokhod and Prokhorov properties. It is also shown that a dyadic compact has the strong Skorokhod property precisely when it is metrizable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.