The matrix-valued function M is entire. An eigenvalue of M(λ) is called a multiplier. It is a root of the algebraic equation D(τ, λ) = 0, where D(τ, λ) ≡ det(M(λ) − τI 4 ), τ, λ ∈ C. Let D ± (λ) = (1/4)D(±1, λ). The zeros of D + (λ) (or D − (λ)) are the eigenvalues of the periodic (anti-periodic) problem for the equation y + Vy = λy. Denote by λ + 0 , λ ± 2n , n = 1, 2, . . . ,If for some λ ∈ C (or λ ∈ R) τ(λ) is a multiplier of multiplicity d 1, then τ −1 (λ) (or τ(λ))is a multiplier of multiplicity d. Moreover, each M(λ), λ ∈ C, has exactly four multipliersis a simple multiplier and |τ(λ)| = 1, then τ (λ) = 0.The spectral problems for the fourth-order periodic operator were the subject of many authors (see [2,3,19,24,25,27,28,31]). Firstly, we mention the papers of Papanicolaou [24, 25] devoted to the Euler-Bernoulli equation (ay ) = λby with the periodic functions a, b. For this case, he defines the Lyapunov function and obtains some properties of this function. In particular, it is proved that the Lyapunov function is analytic on some two-sheeted Riemann surface. It is important that for this case he proved that all branch points of the Lyapunov function are real and 0. Note that in our case we have the example, Proposition 1.7, where the Lyapunov function has real and nonreal branch points. This the main difference between our Lyapunov function and his one. Moreover, Papanicolaou proved that if all the gaps are closed and the Lyapunov at University of Sydney on March 15, 2015 http://imrn.oxfordjournals.org/ Downloaded from Spectral Asymptotics for Periodic Fourth-Order Operators 2777(1.8)We have ρ(λ) = ρ 0 (λ)(1 + o(1)) as |λ| → ∞, λ ∈ D 1 (see Lemma 5.1). Then we define the analytic function ρ(λ), λ ∈ D r , for some large r > 0, by the condition ρ(λ) = ρ 0 (λ)(1 + o(1)) as |λ| → ∞, λ ∈ D r , where ρ 0 (λ) = (cos z − cosh z)/2.The function ρ is real on R, then r is a root of ρ if and only if r is a root of ρ.By Lemma 5.1, for large integer N, the function ρ(λ) has exactly 2N + 1 roots, counted with multiplicity, in the disk {λ : |λ| < 4(π(N + 1/2)) 4 } and for each n > N, exactly two roots, counted with multiplicity, in the domain {λ : |λ 1/4 − π(1 + i)n| < π/4}. There are no
Об одном магнитном операторе Шрёдингера на периодическом графеРассматривается магнитный оператор Шрёдингера на графе специаль-ного вида в R 3 . Этот граф назван кресельным, поскольку граф такого вида с заданным на нем оператором используется в качестве одной из возможных моделей так называемой кресельной нанотрубки, находящей-ся в однородном магнитном поле с амплитудой b, параллельном оси нано-трубки. Спектр рассматриваемого оператора состоит из абсолютно непре-рывной части (спектральных зон, отделенных лакунами) и бесконечного набора собственных значений бесконечной кратности. Найдена асимпто-тика лакун при высоких энергиях и фиксированном b и доказано, что для всех b, за исключением некоторого дискретного множества значений, включающего b = 0, существует бесконечный набор невырожденных ла-кун Gn с длиной |Gn| → ∞ при n → ∞. Исследуется зависимость спектра от магнитного поля и для некоторых специальных потенциалов доказа-но существование лакун, которые не зависят от b. Найдена асимптотика лакун при b → 0.Библиография: 32 названия.Ключевые слова: периодический граф, магнитный оператор Шрё-дингера, спектральные зоны, асимптотики спектральных зон.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.