The presented paper is a review article discussing existing synthesis methods and different applications of nanosized magnetic nanoparticles. It was shown that, in addition to the spectrum of properties typical for nanomaterials (primarily a large specific surface area and a high fraction of surface atoms), magnetic nanoparticles also possess superparamagnetic properties that contribute to their formation of an important class of biomedical functional nanomaterials. This primarily concerns iron oxides magnetite and maghemite, for which in vitro and in vivo studies have shown low toxicity and high biocompatibility in comparison with other magnetic nanomaterials. Due to their exceptional chemical, biological, and physical properties, they are widely used in various areas, such as magnetic hyperthermia, targeted drug delivery, tissue engineering, magnetic separation of biological objects (cells, bacteria, viruses, DNA, and proteins), and magnetic diagnostics (they are used as agents for MRS and immunoassay). In addition to discussing the main problems and prospects of using nanoparticles of magnetic iron oxides for advanced biomedical applications, information is also reflected on their structure, production methods, and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.