Industrial applications of high-power ion beams, basically in the field of material engineering, are presented. The results of experimental investigations of some kinds of applications, such as ion implantation, metal modification, and compounds production of thin films, are considered.
We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1–10 μm) and high-energy density (1–50 J/cm2) of these short-pulsed (⩽1 μs) beams (with ion currents I=5–50 kA, and energies E=100–1000 keV) make them ideal in flash heating a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 1010 K/s causing amorphous layer formation and the producing nonequilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented.
A transition border between macroscopic and nanoscale states of solids associated with change of its physical properties is certain to exist. The change of mechanical, magnetic, thermal and other properties of nanoparticles may be due to the surface tension, decrease in coordination number in the top‐surface layer, rebuilding of the electron shell structure, change of the symmetry group of the crystal lattice and the binding energy. Different defects of the structure can also have significant influence on the physical properties of nanoparticles. A violation of the Neumann principle with decrease of the crystal sized is constant discussed in the literature. In the present work the dependence of elastic module, Debye's temperature, melting point, thermal expansion coefficient, magnetic structure on a size of metal nanoparticles (first of all iron nanoparticles) is discussed. On the basis of the obtained results the scale border between nano‐ and macroscopic states is justified. In the present work the peculiarity of the physical processes (melting, diffusion, defects complexes formation) occurring in nanoparticles and nanomaterials is discussed. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
The possibility of fabricating large‐area solid oxide fuel cells (SOFC) with thin film electrolyte using a commercial physical vapor deposition technology is investigated. Yttria‐stabilized zirconia (YSZ)/gadolinium‐doped ceria (GDC) bilayer electrolyte is successfully deposited on a 10 × 5 cm2 commercial NiO/YSZ anode support by reactive magnetron sputtering. The microstructure of the fuel cells was studied by scanning electron microscopy. Current‐voltage characteristics of fuel cells at a temperature of 750°C and their power stability under electrical load were investigated. Single cells with La0.6Sr0.4Co0.2Fe0.8O3/ Gd0.1Ce0.9O1.95 (LSCF/GDC) cathode had an open cell voltage of 1.14 V and a maximum power density of 490 mW cm−2 at 750 °C using H2/N2 gas mixture as fuel and air as the oxidant. Three‐cell planar SOFC stack using 10 × 5 cm2 anode‐supported unit cells with power density of 450 mW cm−2 at a voltage of 0.7 V per cell has been assembled and tested.
Phase and element composition, microhardness of Ti-6Al-4V titanium alloy, Ti/Ti-6Al-4V and Zr/Ti-6Al-4V systems treated by compression plasma flows have been investigated in this work. X-ray diffraction, scanning electron microscopy, energy-dispersion X-ray microanalysis and Vickers microhardness measurements were used for samples characterization. The findings showed that treatment of the "coating/titanium alloy" system by compression plasma flows allowed decreasing the toxic elements (Al, V) concentration in the surface layer of Ti-6Al-4V titanium alloy. The variation of the energy absorbed by the surface layer resulted in the change of the element concentration and the formation of a number of phases in the modified layer: a solid solution on the basis of α' phase in Ti-6Al-4V and Ti/Ti-6Al-4V systems and β phase in Zr/Ti-6Al-4V system. The formation of δ-TiN x at the surface due to interaction of surface layer atoms with nitrogen atmosphere in the vacuum chamber was also found. The change of phase composition and quenching effects resulted in the microhardness increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.