Aim. To develop a prediction model of individual probability of long term (within first 28 days from the onset) outcome of stroke.Material and methods. By the method of territory-populational registry, in 2009-2016 in 16 regions of Russia, an analysis performed, of significant predictors of fatal stroke outcome. Overall, 50902 strokes registered in persons older 25 y. In 1553 there were no data on long term mortality. By the results of revealed significant predictors of the fatal outcome of stroke by LOTUS method, a tree-branching was done for development of probability of long term fatal outcome during the first 28 days from disease presentation.Results. The significant predictors were acquired, of the fatal outcome of stroke, and graded by odds ratio. Based on the definition of significant predictors of fatal outcome, first time a prediction model developed of probability of long term stroke fatal outcome taken heterogeneity and multifactorial nature of the disease. Clinical guidelines proposed.Conclusion. The developed prediction model of individual probability of long term stroke fatal outcome shows high level of sensitivity and specificity. Application of such model and of proposed clinical guidelines at various stages of patients management will facilitate diagnostical search, management strategy selection and improvement of prevention.
Aim. To develop a mathematical equation (algorithm) to predict the development of chronic heart failure (CHF) for three years, depending on the clinical phenotype.Material and methods. Three hundred forty five patients with CHF with a different left ventricular ejection fraction (preserved, mean, low) were examined. The control group included somatically healthy individuals (n=60). In all patients, 48 parameters that most widely characterize the pathogenesis of CHF (gender-anamnestic, clinical, instrumental, biochemical) were analyzed. To isolate phenotypes, dispersive and cluster analysis was used: the hierarchical classification method and the k-means method. In the development of algorithms we used binary logistic regression method. We used ROC curve to assess the quality of the obtained algorithms.Results. We identified four phenotypes in patients with CHF: fibro-rigid, fibro-inflammatory, inflammatory-destructive, dilated-maladaptive. For the first three phenotypes, a mathematical logistic regression method was used to develop mathematical models for predicting the progression of CHF for three years, with the release of predictors for each phenotype. Belonging to the dilatedmaladaptive phenotype according to the results of the analysis is already an indicator of an unfavorable prognosis in patients with CHF.Conclusion. The developed algorithms based on the selected phenotypes have high diagnostic sensitivity and specificity and can be recommended for use in clinical practice.
Цель: изучить и сопоставить уровень гомоцистеина с результатами коронарографии у больных инфарктом миокарда (ИМ) на фоне хронической обструктивной болезни легких (ХОБЛ). Материалы и методы. Обследовано 246 больных ИМ. У 137 (55,7%) человек ИМ развился на фоне ХОБЛ, 109 (44,3%) пациентов имели ИМ в качестве мононозологии. Группы сравнения составили 55 соматически здоровых лиц и 50 больных ХОБЛ. Определение содержания уровня гомоцистеина в образцах плазмы осуществлялось методом иммуноферментного анализа.Результаты. Стенозы только одной коронарной артерии (КА) при гипергомоцистеинемии встречались редко в обеих группах больных (3,5% у больных ИМ и 3% у больных ИМ на фоне ХОБЛ), статистически значимо преобладали многососудистые поражения КА. Поражение 3 сосудов и более обнаруживали статистически значимо чаще у больных с гипергомоцистеинемией при ИМ на фоне ХОБЛ. Среди больных ИМ с гипергомоцистеинемией преобладали пациенты со степенью сужения КА на 50-75%, а среди больных ИМ на фоне ХОБЛ с гипергомоцистеинемией статистически значимо чаще встречались пациенты со степенью сужения КА на 75-99% и полной окклюзией. То есть у больных с ИМ на фоне ХОБЛ с гипергомоцистеинемией отмечалось более выраженное поражение КА, что проявлялось многососудистым поражением, большей выраженностью окклюзии и более частой регистрацией полного стеноза КА.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.