Modeling the effectiveness of employee compensation by evaluating the relationship with the factors of the labor intensity of products, work experience, and incentive payments based on a linear model of multiple regression on the main components. In this paper, several methods are utilized, including the classical least squares method, variation inflation factor, principal component method. It is expected with theoretical representations that the labor intensity of products reduces the efficiency of employee remuneration, the experience and incentive payments in the General Fund of remuneration positively contribute to the increase in the efficiency of employee remuneration. The expediency of applying linear regression to the main components for measuring internal corporate factors of the employee remuneration system is shown since the linear model of multiple regression can give incorrect estimates due to collinear regressors. A methodological way to modeling employee remuneration effectiveness based on a regression on individual determinants of the motivation and remuneration system has been developed. The developed methodological means to modeling employee remuneration effectiveness has been tested on a poultry enterprise's data for the period from January 2015 to March 2020. The article's main conclusions can be used in the scientific and practical activities of agricultural enterprises in measuring and evaluating the effectiveness of using financial resources to pay.
This article evaluates the relationship of macroeconomic variables of the domestic market with the stock index on the Moscow exchange and selects forecast specifications based on an integrated autoregressive model - the moving average. The methods used are included in an integrated autoregressive-moving average model with exogenous variables and seasonal component, Box and Jenkins approach, auto.arima in R function, Hyndman and Athanasopoulos approach, and maximum likelihood method. The results demonstrate that the inclusion of external regressors in the one-dimensional ARIMAX model improves its predictive characteristics. Time series of macro-indicators of the domestic market – the consumer price index, the index of output of goods and services for basic activities are not interrelated with the index of the Moscow exchange, with the exception of the dollar exchange rate. The positive correlation between the Moscow exchange index and macro indicators of the world economy - the S&P stock index, the price of Brent oil, was confirmed. In models with minimal AIC, a rare presence of the MA component was found, which shows that the prevailing dependence of the stock market yield on previous values of the yield (AR component) and thus, better predictability of the yield. It has shown that for stock market forecasting, "manual" selection of the ARIMA model type can give better results (minimum AIC and minimum RMSE) than the built-in auto.arima algorithm in R. It is shown that from a practical point of view, when selecting forecast models, the RMSE criterion is more useful for investors, which measures the standard error of the forecast in points of the stock index. For the scientific novelty, using Russian financial data for the period from March 2000 to March 2018 to measure the connection of macro indicators of domestic and global markets with the Moscow exchange stock index, considering seasonality can be noticed. The comparison of the forecast model’s accuracy of the ARIMA type obtained by automatic and "manual “selection by AIC and RMSE is performed in favor of "manual" selection. It could be noted that the main conclusions of the article can be used in scientific and practical activities in the stock markets as a practical significance.
Цель: оценка связи цифровой инфраструктуры домашних хозяйств со средним темпом экономического роста в регионах с учетом пространственных зависимостей в краткосрочной и долгосрочной перспективах. Методы: глобальные индексы пространственной корреляции Морана и Гири, локальный индекс пространственной корреляции Морана, эконометрическая модель с пространственным авторегрессионным лагом, эконометрическая модель с пространственным взаимодействием в ошибках, метод максимального правдоподобия. Результаты: показана положительная пространственная зависимость для валового регионального продукта на душу населения и доли населения, использующего сеть Интернет; подтвердилось положительное влияние соседних регионов на экономический рост в данном регионе; обнаружены локальные пространственные кластеры регионов по доле населения, использующего сеть Интернет; выявлена условная β-конвергенция средних темпов роста валового регионального продукта как в краткосрочной, так и в долгосрочной перспективе; подтвержден вывод Солоу об убывающей отдаче избыточного фактора производства; обнаружено положительное влияние числа активных абонентов мобильного широкополосного доступа к сети Интернет на 100 человек населения на средний темп роста валового регионального продукта, доли домохозяйств, имевших персональный компьютер, доли домохозяйств, имевших доступ к сети Интернет, на средний темп роста валового регионального продукта. Научная новизна: в статье впервые на российских региональных панельных данных за период с 2014 по 2017 г. измерена связь цифровой инфраструктуры домохозяйств со средним темпом экономического роста с учетом пространственных зависимостей. Практическая значимость: основные выводы статьи могут быть использованы в научной и практической деятельности при разработке мероприятий для увеличения темпов регионального экономического роста через стимулирование инвестиционного и потребительского спроса домохозяйств. Ключевые слова: цифровая экономика; регион; экономический рост; конвергенция; домохозяйство; цифровизация; пространственно-эконометрическая модель Благодарность: исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-010-00663 «Эволюция модели экономического поведения индивида и домохозяйства в условиях цифровой трансформации».
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.