Исследована возможность применения средств автоматизации для управления сельхозтехникой. Предложены решения по созданию централизованной унифицированной автоматизированной информационной системы управления мобильными агрегатами. Отмечено, что исходя из современных требований эта система должна быть открытой, интегрированной в общую схему управления сельскохозяйственным предприятием. Она должна реализовать идею применения стандартных аппаратных, программных и коммуникационных средств в задачах контроля и управления. Поэтому схема должна строиться на унифицированных модулях и тех стандартах, что освоены в России. Показано, что, базируясь на блочно-модульном построении, комплексная многомерная унифицированная автоматизированная система управления различными объектами сельскохозяйственного назначения должна соответствовать следующим принципам: высокая надежность, простота обслуживания, низкие издержки при эксплуатации, быстрая окупаемость, связанная с увеличением урожайности, сниженные потери при уборке, послеуборочной обработке и хранении, улучшенные энергетические показатели. Установлено, что управление технологическими процессами в сельхозпроизводстве осуществляется в основном с обратной связью. Пример без обратной связиэто программное управление температурой в хранилище при режиме «охлаждение». Обратная связь в управлении технологическими процессами сельхозпроизводства позволяет оптимально решить проблему рационального распределения функций в человеко-распределенных системах и сформировать интеллектуальные эргономические интерфейсы, согласованные с профессиональными представлениями лиц, принимающих решения. Отрицательная обратная связь, создаваемая устройством управления, позволяет автоматически поддерживать показатель качества технологического процесса на заданном уровне. Количественный анализ производственной ситуации опирается на глубоко формализованную базу вычислительной техники, что способствует выработке оптимального решения. Показано, что применение информационной автоматизированной системы управления увеличивает производительность труда на 40 процентов, уменьшает энергетические затраты на 25 процентов. Повышение качества выполняемых технологических операций позволит увеличить урожайность в 1,2-1,3 раза. Ключевые слова: средства автоматизации, автоматизированный контроль и управление, технологические процессы, сельскохозяйственная продукция.
The issues related to the creation of a robotic agricultural mobile unit for the implementation of basic technological processes in the production of products in the field crop field are considered. Functional schemes of various subsystems necessary for monitoring and managing the power, technological and operational modes of a robotic agricultural unit are proposed. On the basis of the analysis of the task assigned to control processes using microprocessor blocks, algorithms are proposed both for the complex as a whole and for individual mechanisms and machines that make up a mobile power tool equipped with various machines designed to perform a number of technological operations for the production of field crop production . The article also deals with issues related to obtaining and transferring information for agronomical and engineering services and optimizing the use of machinery in the farm and improving the efficiency of the entire production cycle. Global perspective of robotic implementation in agriculture are boiled down to possibility of following objectives: creation of the automatic monitoring and predicting systems, reduction of the agricultural production costs, technological processes qualitative indicators improvement, reducing the environmental stress of agricultural production, improving the competitiveness of medium and small agricultural producers, as well as enhance ecological and technological safety. Scientific researches in robotic field should be supported by the State.
To automate the process of harvesting crops, different types of harvesting machines are required. The most common type of machines used to automate ingathering are harvesters. The use of harvesters for collecting grain crops is rational in fields from 2 hectares. On smaller areas it is not profitable and difficult to apply. For applications in small areas, low-capacity harvesters with a throughput of the thresher up to 1 kg/s (small-sized) may be suitable. The purpose of this study is to analyze the cushioning mass control system of a low-capacity unmanned combine harvester using computer simulation, as well as the simulation of directional stability and turning. To calculate vertical vibrations in the Matlab/Simulink software package, a model of a cushioning system for a wheeled agricultural combine was prepared. In the same software package, simulation of directional stability and turning implementation was carried out. The parameters of vibration displacement, vibration velocity and acceleration, as well as the vibration frequency indicators on the operator's seat are determined. Comparison of the simulation results of the initial and corrected direction of movement of the harvester showed that for this model the maximum deviation from the planned path is a maximum of 10%, which is within acceptable limits. The maximum deviation of the harvester from the course does not exceed the permissible values, which is acceptable accuracy to ensure directional stability.
Nowadays, there are many technical and technological solutions to increase productivity in agriculture. One of such solutions is the use of the latest robotic mobile systems that can increase agricultural productivity. For the implementation of these decisions, sound concepts are needed to create control systems for agricultural unmanned mobile energy devices based on an analysis of current trends in the development of robotic mobile energy devices. This paper discusses various areas of the concept of creating unmanned control systems for a mobile energy device - a combine harvester, ensuring high-quality performance of technological operations of harvesting, including the directional stability of the combine harvester. The most effective version of the concept of creating a control system was selected.
The development of robotic and unmanned mobile energy facilities (MEF) is a priority for the development of agricultural production worldwide. In order for the MEF to become unmanned, it must be equipped with an automatic control system that allows you to control the MEF without human intervention. To develop algorithms for the control action and reactions of the control system, as well as to identify and eliminate its incorrect operation, it is necessary to create specialized stationary stands. The stands should simulate the real working conditions of unmanned MEF with maximum accuracy. This article presents the concept of creating a simulation stand for testing the control system of an unmanned combine harvester, which allows you to analyze the operation of the control system in conditions as close as possible to real ones. A functional diagram of the stand and hydraulic circuits of individual simulation units are presented, which should become the basis for the development of the stand design as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.