Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Summary 1.The mechanisms that prevent competition (conflict) between the recipient and co-operative actor in co-operative systems remain one of the greatest problems for evolutionary biology. Previous hypotheses suggest that self-restraint, dispersal or spatial constraints can prevent direct competition for local resources or any other common resources, thereby maintaining stable co-operation interactions. In this study, we use the obligate fig-fig-wasp Mayr) show that the number of viable seeds of figs is positively correlated with the number of pollinator offspring when the number of vacant female flowers is high while the foundress number is low (two foundresses). Meanwhile, they are negatively correlated when the number of vacant female flowers is low and the number of foundresses is increased manually (eight foundresses). The correlation coefficient between viable seeds and wasp offspring (galls) depends on vacant female flower availability. 3. Our data suggest that the interaction between figs and fig wasps is conditional, and that they co-operate when local resource availability is plentiful but are in conflict when local resource availability is limited. The self-restraint, dispersal and spatial heterogeneity previously hypothesized in maintaining stable co-operation cannot sufficiently prevent the symbionts from utilizing more local resources at the expense of the recipients. The conflict, which can disrupt the co-operation interaction, exists after the local resource is saturated with symbionts. The repression of symbiont increase, therefore repressing the utilization of local resources in the conflict period, is crucial in the maintenance and evolution of co-operation.
Empirical observations have shown that cooperative partners can compete for common resources, but what factors determine whether partners cooperate or compete remain unclear. Using the reciprocal fig–fig wasp mutualism, we show that nonlinear amplification of interference competition between fig wasps—which limits the fig wasps' ability to use a common resource (i.e. female flowers)—keeps the common resource unsaturated, making cooperation locally stable. When interference competition was manually prevented, the fitness correlation between figs and fig wasps went from positive to negative. This indicates that genetic relatedness or reciprocal exchange between cooperative players, which could create spatial heterogeneity or self-restraint, was not sufficient to maintain stable cooperation. Moreover, our analysis of field-collected data shows that the fitness correlation between cooperative partners varies stochastically, and that the mainly positive fitness correlation observed during the warm season shifts to a negative correlation during the cold season owing to an increase in the initial oviposition efficiency of each fig wasp. This implies that the discriminative sanction of less-cooperative wasps (i.e. by decreasing the egg deposition efficiency per fig wasp) but reward to cooperative wasps by fig, a control of the initial value, will facilitate a stable mutualism. Our finding that asymmetric interaction leading to an indeterminate fitness interaction between symbiont (i.e. cooperative actors) and host (i.e. recipient) has the potential to explain why conflict has been empirically observed in both well-documented intraspecific and interspecific cooperation systems.
SignificanceThe evolution of cooperation has a formative role in human societies—civilized life on Earth would be impossible without cooperation. However, it is unclear why cooperation would evolve in the first place because Darwinian selection favors selfish individuals. After struggling with this problem for >150 y, recent scientific breakthroughs have uncovered multiple cooperation-promoting mechanisms. We build on these breakthroughs by examining whether two widely known cooperation-promoting mechanisms—network reciprocity and costly punishment—create synergies in a social dilemma experiment. While network reciprocity fulfilled its expected role, costly punishment proved to be surprisingly ineffective in promoting cooperation. This ineffectiveness suggests that the rational response to punishment assumed in theoretical studies is overly stylized and needs reexamining.
The decoy effect is a cognitive bias documented in behavioural economics by which the presence of a third, (partly) inferior choice causes a significant shift in people’s preference for other items. Here, we performed an experiment with human volunteers who played a variant of the repeated prisoner’s dilemma game in which the standard options of “cooperate” and “defect” are supplemented with a new, decoy option, “reward”. We show that although volunteers rarely chose the decoy option, its availability sparks a significant increase in overall cooperativeness and improves the likelihood of success for cooperative individuals in this game. The presence of the decoy increased willingness of volunteers to cooperate in the first step of each game, leading to subsequent propagation of such willingness by (noisy) tit-for-tat. Our study thus points to decoys as a means to elicit voluntary prosocial action across a spectrum of collective endeavours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.