A Lactobacillus brevis strain with the ability to synthesize butanol from glucose was constructed by metabolic engineering. The genes crt, bcd, etfB, etfA, and hbd, composing the bcs-operon, and the thl gene encode the enzymes of the lower part of the clostridial butanol pathway (crotonase, butyryl-CoA-dehydrogenase, two subunits of the electron transfer flavoprotein, 3-hydroxybutyryl-CoA dehydrogenase, and thiolase) of Clostridium acetobutylicum. They were cloned into the Gram-positive/Gram-negative shuttle plasmid vector pHYc. The two resulting plasmids pHYc-thl-bcs and pHYc-bcs (respectively, with and without the clostridial thl gene) were transferred to Escherichia coli and L. brevis. The recombinant L. brevis strains were able to synthesize up to 300 mg l(-1) or 4.1 mM of butanol on a glucose-containing medium. A L. brevis strain carrying the clostridial bcs-operon has the ability to synthesize butanol with participation of its own thiolase, aldehyde dehydrogenase, and alcohol dehydrogenase. The particular role of the enzymes involved in butanol production and the suitability of L. brevis as an n-butanol producer are discussed.
Using a screening procedure developed for detection of phytate hydrolysing enzymes, the gene agpE encoding glucose-1-phosphatase was cloned from an Enterobacter cloacae VKPM B2254 plasmid library. Sequence analysis revealed 78% identity on nucleotide and 79% identity on peptide level to Escherichia coli glucose-1-phosphatase characterising the respective gene product as a representative of acid histidine phosphatases harbouring the RH(G/N)RXRP motif. The purified recombinant protein displayed maximum specific activity of 196 U mg(-1) protein against glucose-1-phosphate but was also active against other sugar phosphates and p-nitrophenyl phosphate. High-performance ion chromatography of hydrolysis products revealed that AgpE can act as a 3-phytase but is only able to cleave off the third phosphate group from the myo-inositol sugar ring. Based on sequence comparison and catalytic behaviour against phytate, we propose to classify bacterial acid histidine phosphatases/phytases in the three following subclasses: (1) AppA-related phytases, (2) PhyK-related phytases and (3) Agp-related phytases. A distinguished activity of 32 U mg(-1) of protein towards myo-inositol-hexa-phosphate, which is two times higher than that of E. coli Agp, suggests that possibly functional differences in terms of phytase activity between Agp- and AppA-like acid histidine phosphatases are fluent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.