The paper first proposes a method of targeted direct transformation of the characteristics of a silicon bipolar high-power microwave transistor due to a change in the chemical composition at the «molybdenum - silicon» interface, the electrophysical properties of «molybdenum - silicon» contacts, and the electrophysical characteristics of transistor structure regions by irradiating «molybdenum - silicon» emitters with phosphorus ions transistor. The possibilities of this method are investigated and confirmed by experiments.
The paper considers the formation of a transition layer of Mo - Si contacts, as well as the effect of Mo film deposition regimes and methods of heat treatment of contacts. It was found that when forming contacts of microwave transistors, by deposition of a Mo film on the surface of an epitaxial silicon layer, the structure of the latter depends on the dose of doping with phosphorus ions and on the temperature of post-implantation annealing. The results of experiments and two-dimensional physico-mathematical modeling to study the dependence of the parameters of test samples of the KT916A transistor depending on the dose of matching the emitters with phosphorus ions through a molybdenum film are presented. It is shown that with an increase in the doping dose, the surface and maximum concentration of phosphorus increases. At the same time, both energy and frequency characteristics of the transistor are improved, and the radiation resistance increases.
The possibility of creating silicon bipolar high-power microwave transistors by the method of ion doping of monosilicon with B + ions through a layer of SiO2 and emitter windows in it with the subsequent introduction of P + ions into them and annealing in argon is shown. The developed process reduces the labor intensity of manufacturing and improves the frequency and power characteristics of transistors: increasing the cut-off frequency (collector current = 1.5 A) from 1.8 to 2.1 GHz and from 1.5 to 1.9 GHz (collector current = 2,8 A), output power from 20 to 21.3 W, power gain from 2.5 to 2.7, collector efficiency from 60 to 79.8 %. The formation of pockets of n- and p- type CMOS structures was considered using a mask of thermal SiO2 without a layer of Si3N4. The developed process reduces the labor intensity of manufacturing by ~ 21.5 % and increases the yield of CMOS microcircuit structures by ~ 4.5 %, thanks to a decrease in the residual stresses in monosilicon and the improvement of pocket doping methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.