Introduction. Cerebral palsy is one of the most common non-progressive neurological disorders caused by fetal or infant brain injury. Current rehabilitation for children with cerebral palsy involves a series of measures, including physical training, special massage techniques, physiotherapy, treatment by certain positions and postures, use of supporting orthoses and fixation devices for walking, and special orthopedic suits facilitating verticalization and motor activity of a child. Over the last few decades, computerized stimulators and robotics with virtual reality systems have been actively used in neurorehabilitation. However, most of these systems did not show significant efficiency in rehabilitation of children with cerebral palsy. In the last few years, different non-invasive electrostimulation techniques have been considered innovative and can be applied independently or in combination with existing procedures. One of such techniques is translingual neurostimulation. Aim. This study aimed to evaluate the effectiveness of a combination of translingual neurostimulation and physical rehabilitation for children with cerebral palsy. Materials and methods. In this study, we observed 134 children (63 girls and 71 boys) with spastic diplegia aged 2–17 years (mean age is 7.8 years old ± 0.3). Depending on the type of rehabilitation therapy, the patients were divided into two groups: active (main) and control. Active group consisted of 94 children who received standard restorative treatment in combination with translingual neurostimulation, whereas the control group consisted of 40 children who received only standard rehabilitation treatment without translingual neurostimulation. Results. Both groups of patients showed positive dynamics; however, patients in the active group showed greater improvements as evidenced by all grading scales. Improvements were observed in children of all ages, and the results were mostly stable for 12 months. Conclusion. Translingual neurostimulation is a novel approach to neurorehabilitation that shows promising results, in addition to its proven effectiveness and safety. As a result of neurostimulation, the patient’s brain becomes more susceptible to the applied therapeutic procedures aimed at restoring motor control and formation of new motor skills, thereby markedly increasing the effectiveness of neurorehabilitation. This study broadens the perspectives in the use and further development of translingual neurostimulation in rehabilitation of children with cerebral palsy.
The mechanical properties of tendons are thought to be affected by different loading levels. Changes in the mechanical properties of tendons, such as stiffness, have been reported to influence the risk of tendon injuries chiefly in athletes and the elderly, thereby affecting motor function execution. Unloading resulted in reduced tendons stiffness, and resistance exercise exercise counteracts this. Transforming growth factor-1 is a potent inducer of type I collagen and mechanosensitive genes encoding tenogenic differentiation markers expression which play critical roles in tendon tissue formation, tendon healing and their adaptation during exercise. In recent years, our understanding of the molecular biology of tendons growth and repair has expanded. It is probable that the next advance in the treatment of tendon injuries will result from the application of this basic science knowledge and the clinical solution will encompass not only the the best postoperative rehabilitation protocols, but also the optimal biological modulation of the healing process.
Precision (target) medicine is proposed as a new strategy to identify and develop new highly selective drugs against specific targets for the disease and more precise tailoring of medicines to the target populations of patients. Precision medicine can be an important approach to create more novel and safer therapeutics (tyrosine kinase inhibitors, tumour specific monoclonal antibodies) for patients with gene mutation, aberrations, or protein over-expression. Precision medicine requires an understanding mutational processes, and heterogeneity between cancer cells during tumor evolution. The present review briefly define various heterogeneities and potential associations with drug efficacy and resistance, emphasize the importance to develop functional biomarkers to monitor drug efficacy and resistance, and define opportunities and challenges of precision medicine for clinical practice.
Inflammation, cardiac remodeling, and fibrosis are potentially important pathways in the pathogenesis of cardiovascular diseases. Complications of atherosclerosis are one of the leading causes of death in the world. Effective prevention of cardiovascular disease by adequate control of major cardiovascular risk factors can provide substantial public health gains. However, detection and control of major cardiovascular risk factors continues to be a major challenge because of poor awareness of an individual's status. A solution to this problem is important for an early identification and appropriate correction of cardiovascular risk factors. Atherosclerotic plaque development is regarded as a chronic inflammatory process which involves interactions between lipids, immune cells and the artery wall. Numerous evidence suggests that inflammation plays an important role in all stages of the atherosclerotic process. The study of associations of inflammatory biomarkers has led to the idea that the panel of inflammatory biomarkers can identify people at high risk of developing atherosclerosis and cardiovascular diseases when anti-inflammatory treatment can prevent further unfavorable events. The most common forms of cardiovascular diseases are caused by atherosclerosis, the progressive thinning of blood vessels due to accumulation of lipids within the arterial wall. While many factors are known to influence the development and progression of atherosclerosis, circulating levels of cholesterol and lipoprotein complexes are the most important risk factors and mediators of atherosclerotic disease. Key regulators of lipid metabolism and/or the development of atherosclerosis have diagnostic, prognostic and therapeutic potential for cardiovascular diseases.
Heart failure is detected in 2% of the population. The leading causes of heart failure are coronary heart disease, arterial hypertension, and valvular heart disease. The number of patients with chronic heart failure continues to increase despite the new methods of diagnosis and treatment. A special contribution is made by damage to target organs in the development of cardiovascular pathology. Impaired liver function or congestive liver is common in heart failure and increases the risk of death and requires further study. The mechanism of liver damage in chronic heart failure is complex and multicomponent. The sensitivity and specificity of standard clinical, laboratory and instrumental methods for the diagnosis of congestive liver are insufficient. With the increase, severity and duration of venous congestion, structural changes in the architectonics occur, leading to the formation of liver fibrosis. The development of cardiac liver fibrosis leads to a complication of the course of chronic heart failure and an increase in mortality. Among the new diagnostic methods, the most important are serological markers of liver fibrosis, which have high diagnostic accuracy, as well as histological determination of fibrosis, as well as ultrasound examination of the liver in B-mode and determination of liver stiffness by elastography. Direct and indirect serological markers have a higher diagnostic value when using their combination in the composition of panels in the development of hepatopathy of different origins. An increase in the concentration of markers of fibrosis and liver stiffness during elastography correlates with the severity of heart failure and a long-term prognosis for mortality, including from extrahepatic diseases. Performing liver elastography in dynamics allows to monitor the course and treatment of heart failure. The optimal diagnostic method is a combination of direct and indirect markers of fibrosis, ultrasound diagnostics and elastography, in addition to clinical assessment of signs and direct assessment of hemodynamic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.