Currently there is a great interest in II–VI semiconductor nanoparticles, particularly organically capped soluble particles of cadmium or zinc sulphide and selenide, for their ready to use application in devices. For electroluminescence (EL) devices, it is expected to cover a broad spectrum and to tune various specific colours by preparing Cd1-xZnx Se instead of CdSe and ZnSe. Ternary alloys have composition dependent properties; therefore Cd1-xZnxSe has attracted much attention in the fields of luminescence and optoelectronic devices. It has wide optical band-gap and good stability with respect to environment. In this study, Cd1-xZnxSenanoparticles have been synthesized by using starch as a capping agent through a chemical synthesis route at room temperature. Samples have been prepared varying composition factor ‘x’ in ternary alloy Cd1-xZnxSe. Cubic structure of all has been confirmed by XRD. Crystallite size calculated from XRD was found in the range of 3-5 nm and it was observed that size reduces on increasing Zn content in ternary compound. Optical absorption spectra showed the blue shift in absorption edge with increasing Zn content. Band gap has been obtained by absorption studies and increase in band gap observed on increasing Zn content in the compound. Electroluminescence studies reveal that lower threshold voltage is required for samples with lower ‘x’ value. The Brightness increases on increasing the voltage above threshold voltage and the variation pattern is almost exponential for all samples. The voltage-current curve represents ohmic nature of the EL cell. Impedance was found to increase on increasing ‘x’ value. The increase in EL intensity is faster for higher frequency. EL spectra revealed that light emission is in violet-green region corresponding to band gap for both Cd0.75 Zn 0.25Se and Cd0.5 Zn 0.5Se, with a slight blue shift on increasing Zn content. A ternary system Cd1–xZnxSe, may be engineered better for application purpose by suitably choosing the composition parameter ‘x’.Contents of Paper