Abstract-Ultra-low voltage operation of memory cells has become a topic of much interest due to its applications in very low energy computing and communications. However, due to parameter variations in scaled technologies, stable operation of SRAMs is critical for the success of low-voltage SRAMs. It has been shown that conventional 6T SRAMs fail to achieve reliable subthreshold operation. Hence, researchers have considered different configuration SRAMs for subthreshold operations having single-ended 8T or 10T bit-cells for improved stability. While these bit-cells improve SRAM stability in subthreshold region significantly, the single-ended sensing methods suffer from reduced bit-line swing due to bit-line leakage noise. In addition, efficient bit-interleaving in column may not be possible and hence, the multiple-bit soft errors can be a real issue. In this paper, we propose a differential 10T bit-cell that effectively separates read and write operations, thereby achieving high cell stability. The proposed bit-cell also provides efficient bit-interleaving structure to achieve soft-error tolerance with conventional Error Correcting Codes (ECC). For read access, we employ dynamic DCVSL scheme to compensate bitline leakage noise, thereby improving bitline swing.