2020
DOI: 10.1111/anzs.12307
|View full text |Cite
|
Sign up to set email alerts
|

A loss‐based prior for Gaussian graphical models

Abstract: Gaussian graphical models play an important role in various areas such as genetics, finance, statistical physics and others. They are a powerful modelling tool, which allows one to describe the relationships among the variables of interest. From the Bayesian perspective, there are two sources of randomness: one is related to the multivariate distribution and the quantities that may parametrise the model, and the other has to do with the underlying graph, G, equivalent to describing the conditional independence… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 48 publications
(101 reference statements)
0
0
0
Order By: Relevance