The availability of large databases of athletic performances offers the opportunity to understand age-related performance progression and to benchmark individual performance against the World’s best. We build a flexible Bayesian model of individual performance progression whilst allowing for confounders, such as atmospheric conditions, and can be fitted using Markov chain Monte Carlo. We show how the model can be used to understand performance progression and the age of peak performance in both individuals and the population. We apply the model to both women and men in 100 m sprinting and weightlifting. In both disciplines, we find that age-related performance is skewed, that the average population performance trajectories of women and men are quite different, and that age of peak performance is substantially different between women and men. We also find that there is substantial variability in individual performance trajectories and the age of peak performance.
In this paper we present a loss-based approach to change point analysis. In particular, we look at the problem from two perspectives. The first focuses on the definition of a prior when the number of change points is known a priori. The second contribution aims to estimate the number of change points by using a loss-based approach recently introduced in the literature. The latter considers change point estimation as a model selection exercise. We show the performance of the proposed approach on simulated data and real data sets.
As the aim of any doping regime is to improve sporting performance, it has been suggested that analysis of athlete competitive results might be informative in identifying those at greater risk of doping. This research study aimed to investigate the utility of a statistical performance model to discriminate between athletes who have a previous anti-doping rule violation (ADRV) and those who do not. We analysed performances of male and female 100 and 800 m runners obtained from the World Athletics database using a Bayesian spline model. Measures of unusual improvement in performance were quantified by comparing the yearly change in athlete's performance (delta excess performance) to quantiles of performance in their age-matched peers from the database population. The discriminative ability of these measures was investigated using the area under the ROC curve (AUC) with the 55%, 75% and 90% quantiles of the population performance. The highest AUC values across age were identified for the model with a 75% quantile (AUC = 0.78-0.80). The results of this study demonstrate that delta excess performance was able to discriminate between athletes with and without ADRVs and therefore could be used to assist in the risk stratification of athletes for antidoping purposes.
Gaussian graphical models play an important role in various areas such as genetics, finance, statistical physics and others. They are a powerful modelling tool, which allows one to describe the relationships among the variables of interest. From the Bayesian perspective, there are two sources of randomness: one is related to the multivariate distribution and the quantities that may parametrise the model, and the other has to do with the underlying graph, G, equivalent to describing the conditional independence structure of the model under consideration. In this paper, we propose a prior on G based on two loss components. One considers the loss in information one would incur in selecting the wrong graph, while the second penalises for large number of edges, favouring sparsity. We illustrate the prior on simulated data and on real datasets, and compare the results with other priors on G used in the literature. Moreover, we present a default choice of the prior as well as discuss how it can be calibrated so as to reflect available prior information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.