An ideal approach to the problem of pose-invariant face recognition would handle continuous pose variations, would not be database specific, and would achieve high accuracy without any manual intervention. Most of the existing approaches fail to match one or more of these goals. In this paper, we present a fully automatic system for pose-invariant face recognition that not only meets these requirements but also outperforms other comparable methods. We propose a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system. The current system can handle 3D pose variation up to +-45 in yaw and +-30 in pitch angles. Recognition experiments were conducted on the USF 3D, Multi-PIE, CMU-PIE, FERET, and FacePix databases. Our system not only shows excellent generalization by achieving high accuracy on all 5 databases but also outperforms other methods convincingly.
International Conference on Computer Vision (ICCV)This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.
AbstractAn ideal approach to the problem of pose-invariant face recognition would handle continuous pose variations, would not be database specific, and would achieve high accuracy without any manual intervention. Most of the existing approaches fail to match one or more of these goals. In this paper, we present a fully automatic system for poseinvariant face recognition that not only meets these requirements but also outperforms other comparable methods. We propose a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system. The current system can handle 3D pose variation up to ±45• in yaw and ±30• in pitch angles. Recognition experiments were conducted on the USF 3D, Multi-PIE, CMU-PIE, FERET, and FacePix databases. Our system not only shows excellent generalization by achieving high accuracy on all 5 databases but also outperforms other methods convincingly.