Please cite this article as: Okereke, M.I., Akpoyomare, A.I., Bingley, M.S., Virtual testing of advanced composites, cellular materials and biomaterials: a review, Composites: Part B (2014), doi: http://dx.doi.org/10. 1016/ j.compositesb.2014.01.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractThis paper documents the emergence of virtual testing frameworks for prediction of the constitutive responses of engineering materials. A detailed study is presented, of the philosophy underpinning virtual testing schemes: highlighting the structure, challenges and opportunities posed by a virtual testing strategy compared with traditional laboratory experiments. The virtual testing process has been discussed from atomistic to macrostructural lengthscales of analyses. Several implementations of virtual testing frameworks for diverse categories of materials are also presented, with particular emphasis on composites, cellular materials and biomaterials (collectively described as heterogeneous systems, in this context). The robustness of virtual frameworks for prediction of the constitutive behaviour of these materials is discussed. The paper also considers the current thinking on developing virtual laboratories in relation to availability of computational resources as well as the development of multi-scale material model algorithms. In conclusion, the paper highlights the challenges facing developments of future virtual testing frameworks. This review represents a comprehensive documentation of the state of knowledge on virtual testing from microscale to macroscale length scales for heterogeneous materials across constitutive responses from elastic to damage regimes.