Experimental evidence explaining the extremely low-threshold electron emission from diamond reported in 1996 has been obtained for the first time. Direct observation using combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES) proved that the origin of field-induced electron emission from heavily nitrogen (N)-doped chemical vapour deposited (CVD) diamond was at conduction band minimum (CBM) utilising negative electron affinity (NEA). The significance of the result is that not only does it prove the utilisation of NEA as the dominant factor for the extremely low-threshold electron emission from heavily N-doped CVD diamond, but also strongly implies that such low-threshold emission is possible from other types of diamond, and even other materials having NEA surface. The low-threshold voltage, along with the stable intensity and remarkably narrow energy width, suggests that this type of electron emission can be applied to develop a next generation vacuum nano-electronic devices with long lifetime and high energy resolution.